首页 | 本学科首页   官方微博 | 高级检索  
     


Hot ductility trough elimination through single cycle of intense cooling and reheating for microalloyed steel casting
Authors:C Du  J Zhang  J Wen  Y Li  P Lan
Affiliation:1. State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083 China;2. School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083 China;3. CITIC DICASTAL CO., LED, Qinhuangdao, 066011 China;4. State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081 China
Abstract:Surface transverse cracking, especially corner cracking, is prone to generate in continuously cast slabs of microalloyed steels. The method of surface structure control (SSC) was supposed to the best way to avoid the detrimental defects. However, the mechanism of improving hot ductility by SSC and the specific parameters to control the process are still unclear for the reasonable adoption in production. In the present work, the impact of cooling rate, holding temperature and holding time on austenite decomposition, and the austenite grain size before and after intense cooling were investigated by thermal simulation method. With the increase of cooling rate, it is observed that the phase is transformed from austenite?→?grain boundary film-like alltromorph ferrite?→?Widmanstätten ferrite plates (or intragranular ferrite plates)?→?bainite+martensite. Mostly important, the film-like ferrite can be eliminated through intense cooling and the following reheating, but the austenite grain size is not observed to be refined through the single γ?→?α?→?γ cycle. Even though, the reduction of area (RA) is improved drastically to over 70% in the third ductility trough, whereas the RA value is just
Keywords:Continuous casting  Transverse cracking  Hot ductility improvement  Intense cooling  Reheating  Microalloyed steel
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号