首页 | 本学科首页   官方微博 | 高级检索  
     

基于GRNN神经网络的面料热阻预测模型研究
作者姓名:周俊文  宋晓霞
作者单位:上海工程技术大学服装学院
摘    要:热阻是衡量面料热舒适性的一项重要指标,为获得不同环境下面料的热阻值,多采用测试获得。文章通过YG(B)606G型纺织品热阻和湿阻测试仪,对不同面料在不同环境下的热阻进行测试。运用Matlab,基于GRNN(General Regression Neural Network)广义回归神经网络,使用少量输入参数,对不同环境下的热阻值进行预测。与传统的测试相比,GRNN神经网络实验量小,方便快捷、省时省力且预测结果准确性好;与BP(Back Propagation)神经网络相比,GRNN神经网络人为设定量更少,更为客观,预测结果更加准确。经Wilcoxon符号秩检验配对样本检验发现,GRNN神经网络预测值与实际值更加接近,可信度更强。

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号