首页 | 本学科首页   官方微博 | 高级检索  
     


A model predictive functional control based on proportional-integral-derivative (PID) and proportional-integral-proportional-derivative (PIPD) using extended non-minimal state space: Application to a molten carbonate fuel cell process
Authors:Beom Seok Kim  Tae Young Kim  Tae Chang Park  Yeong Koo Yeo
Affiliation:1.Department of Chemical Engineering,Hanyang University,Seoul,Korea
Abstract:The performance of most controllers, including proportional-integral-derivative (PID) and proportional-integral-proportional-derivative (PIPD) controllers, depends upon tuning of control parameters. In this study, we propose a novel tuning strategy for PID and PIPD controllers whose control parameters are tuned using the extended non-minimal state space model predictive functional control (ENMSSPFC) scheme based on the auto-regressive moving average (ARMA) model. The proposed control method is applied numerically in the operation of the MCFC process with the parameters of PID and PIPD controllers being optimized by ENMSSPFC based on the ARMA model for the MCFC process. Numerical simulations were carried out to assess the set-point tracking performance and disturbance rejection performance both for the perfect plant model, which represents the ideal case, and for the imperfect plant model, which is usual in practical applications. When there exists uncertainty in the plant model, the PIPD controller exhibits better overall control performance compared to the PID controller.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号