首页 | 本学科首页   官方微博 | 高级检索  
     


Thermal–hydraulic characteristics of a next-generation reactor relying on steam generator secondary side cooling for primary depressurization and long-term passive core cooling
Authors:Taisuke Yonomoto  Iwao Ohtsu  Yoshinari Anoda
Affiliation:Department of Reactor Safety Engineering, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-11, Japan
Abstract:System experiments were conducted at the ROSA-V Large Scale Test Facility (LSTF) for investigation of new safety systems to mitigate consequences of postulated accidents in pressurized water rectors (PWRs). Tested systems included a steam generator (SG) secondary-side automatic depressurization system (SADS) and gravity-driven injection system (GDIS), which are candidates of safety systems for some next-generation PWR designs. The experimental results showed several thermal–hydraulic behaviors typical of these safety systems, including the primary depressurization due to natural circulation cooling, a nonuniform flow behavior among SG U-tubes, an accumulation of the non-condensable gas originally contained in the injected water, liquid holdup in U-tubes due to the countercurrent flow limiting, and long-term passive core cooling with the GDIS injection. From the assessment of the RELAP5/MOD3 code using the present data, it was found that the inability of the code to predict the U-tube nonuniform flow behavior resulted in overprediction of the primary depressurization rate at a pressure less than 1 MPa, and exaggerated oscillation of the natural circulation flow rate in the primary loop.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号