首页 | 本学科首页   官方微博 | 高级检索  
     

代价敏感概率神经网络及其在故障诊断中的应用
引用本文:唐明珠阳春华,桂卫华. 代价敏感概率神经网络及其在故障诊断中的应用[J]. 控制与决策, 2010, 25(7): 1074-1078
作者姓名:唐明珠阳春华  桂卫华
作者单位:中南大学,信息科学与工程学院,长沙,410083;中南大学,信息科学与工程学院,长沙,410083;中南大学,信息科学与工程学院,长沙,410083;中南大学,信息科学与工程学院,长沙,410083
基金项目:国家自然科学基金,国家863计划项目,湖南省自然科学基金
摘    要:针对传统的分类算法人多以误分率最小化为目标,忽略了误分类型之间的差别和数据集的非平衡性的问题,提出代价敏感概率神经网络算法.该算法将代价敏感机制引入概率神经网络,用期望代价取代误分率,以期望代价最小化为目标,基于期望代价最小的贝叶斯决策规则预测新样本类别.采用工业现场数据和数据集German Credit验证了该算法的有效性.实验结果表明,该算法具有故障识别率高、泛化能力强、建模时间短等特点.

关 键 词:代价敏感学习  概率神经网络  分类  代价敏感概率神经网络
收稿时间:2009-06-22
修稿时间:2009-09-27

Cost-sensitive probabilistic neural network with its application in fault diagnosis
TANG Ming-zhu,YANG Chun-hua,GUI Wei-hua,XIE Yong-fang. Cost-sensitive probabilistic neural network with its application in fault diagnosis[J]. Control and Decision, 2010, 25(7): 1074-1078
Authors:TANG Ming-zhu  YANG Chun-hua  GUI Wei-hua  XIE Yong-fang
Abstract:Most original classification algorithms pursue to minimize the error rate, while the differences between types
of misclassification errors and imbalanced dataset are ignored. Therefore, cost-sensitive probabilistic neural network (CS-
PNN) is proposed for the problem in this paper, in which cost-sensitive mechanism is introduced into probabilistic neural
network. CS-PNN is aimed to minimize expected cost, and the misclassification rate is replaced by expectation cost. Class
labels of new instances are predicted by using Bayes decision rules based on minimizing expected cost. The effectiveness
of the algorithm is verified by industrial data and dataset of German Credit. Experimental results show that CS-PNN is
characterized by high recognition for faults, strong ability of generalization and short modeling time.
Keywords:Cost-sensitive learning|Probabilistic neural network|Classification|Cost-sensitive probabilistic neural network
本文献已被 万方数据 等数据库收录!
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号