首页 | 本学科首页   官方微博 | 高级检索  
     

基于图像多尺度熵的红外图像匹配跟踪算法
引用本文:刘兴淼,王仕成,赵静. 基于图像多尺度熵的红外图像匹配跟踪算法[J]. 控制与决策, 2011, 26(5): 768-772
作者姓名:刘兴淼  王仕成  赵静
作者单位:第二炮兵工程学院科研部,西安,710025
基金项目:国家技改重点项目子课题
摘    要:在对图像熵进行分析的基础上,引入图像多尺度熵的概念,定义了图像的多尺度熵及多尺度熵矢量,提出了一种基于区域的匹配跟踪算法—–基于图像多尺度熵的红外图像匹配跟踪算法.首先计算图像的多尺度熵,得到图像多尺度熵矢量;然后利用多尺度熵矢量间的绝对距离(AD)进行匹配跟踪.实验表明,该算法不仅具有稳定、精确的匹配跟踪性能,而且能在目标发生旋转时,较好地匹配跟踪目标,并具有良好的抗几何失真能力.

关 键 词:图像匹配  多尺度熵  图像跟踪  红外图像
收稿时间:2010-03-11
修稿时间:2010-06-01

Infrared image matching tracking algorithm based on image multi-scale
entropy
LIU Xing-miao,WANG Shi-cheng,ZHAO Jing. Infrared image matching tracking algorithm based on image multi-scale
entropy[J]. Control and Decision, 2011, 26(5): 768-772
Authors:LIU Xing-miao  WANG Shi-cheng  ZHAO Jing
Affiliation:(Department of Technology,The Second Artillery Engineering College,Xi’an 710025,China.)
Abstract:

After analyzing the entropy of the image, the conception of image multi-scale entropy is introduced, and image
multi-scale entropy and the vector of image multi-scale entropy are defined. A region matching tracking method-infrared
image matching tracking algorithm based on image multi-scale entropy is present. Firstly, the image multi-scale entropy and
the vector of the image multi-scale entropy are calculated. Then the absolute distance(AD) of the vector of image multi-scale
entropy is applied to matching and tracking. The experimental results show that the proposed algorithm has the robustness
matching tracking properties and is robust to the problems of the rotation and geometry distortion of targets.

Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号