首页 | 本学科首页   官方微博 | 高级检索  
     

多元时间序列模式匹配方法研究
引用本文:李正欣,张凤鸣,李克武. 多元时间序列模式匹配方法研究[J]. 控制与决策, 2011, 26(4): 565-570
作者姓名:李正欣  张凤鸣  李克武
作者单位:空军工程大学,工程学院,西安,710038
摘    要:针对多元时间序列模式匹配的方法难以高效、准确地刻画序列相似程度的问题,在考虑变量的量纲和特征差异的基础上,对多元时间序列进行多维分段拟合;然后,选取各个变量维度上拟合线段的倾斜角和时间跨度作为模式的描述方式,提出一种基于动态时间弯曲(DTW)的多元时间序列趋势距离匹配方法.实验结果表明,所提出的模式匹配方法对由连续型变量组成、时间跨度较大且体现一个连续、完整动作过程的多元时间序列,具有较好的匹配效果.

关 键 词:多元时间序列  多维分段拟合  动态时间弯曲  模式匹配
收稿时间:2010-01-04
修稿时间:2010-05-05

Research on pattern matching method for multivariate time series
LI Zheng-xin,ZHANG Feng-ming,LI Ke-wu. Research on pattern matching method for multivariate time series[J]. Control and Decision, 2011, 26(4): 565-570
Authors:LI Zheng-xin  ZHANG Feng-ming  LI Ke-wu
Affiliation:(Engineering Institute,Air Force Engineering University,Xi’an 710038,China.)
Abstract:

Common methods for matching multivariate time series can’t measure their similarity rapidly and accurately.
Multivariate time series are fitted with multidimensional piecewise method on the basis of considering feature difference of
different variables. Then the angle of inclination and time span of a fitting line segment in a certain variable dimension are
chosen as feature pattern. A pattern matching method based on dynamic time warping(DTW) is proposed for multivariate
time series. Finally, the experimental results show that the proposed method can measure the similarity of multivariate
time series rapidly and accurately, which are composed of continuous variables and can present a whole action process in a
comparatively long time.

Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号