首页 | 本学科首页   官方微博 | 高级检索  
     


Role of nitric oxide in pathogenesis of gastric mucosal damage induced by compound 48/80 in rats
Authors:T Yasuhiro  A Konaka  H Ukawa  S Kato  K Takeuchi
Affiliation:Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Japan.
Abstract:We examined the effects of various nitric oxide synthase (NOS) inhibitors on development of gastric lesions induced by compound 48/80 (48/80) in rats and investigated the roles of NO and inducible NOS (iNOS) in inflammatory gastric responses. Animals were given 48/80 (1 mg/kg, i.p.) once daily for 4 days, and the stomachs were examined for lesions 24 h after the final administration. NOS inhibitors such as L-NAME, L-NMMA, aminoguanidine or dexamethasone were administered for 4 days during 48/80 treatment. The repeated administration of 48/80 caused damage in the stomach with severe edema in the submucosa. These lesions induced by 48/80 were dose-dependently prevented by concurrent administration of L-NAME. The protective effect of L-NAME on 48/80-induced gastric lesions was mimicked by L-NMMA, aminoguanidine as well as dexamethasone, and significantly antagonized by co-administration of L-arginine but not by D-arginine. Acid secretion was slightly decreased after 48/80 treatment, but was significantly augmented by the combined administration of L-NAME with 48/80. The mucosal MPO activity, TBA reactants and vascular permeability in the stomach were all increased after 48/80 treatment, but these changes were also significantly mitigated by co-administration of L-NAME. The Ca(2+)-independent NOS activity in the mucosa was increased four times during 48/80 treatment, and this change was also inhibited by dexamethasone. These results suggest that: 1) the repeated administration of 48/80 induced inflammatory gastric lesions in the rat stomach; 2) the pathogenic mechanism of these lesions involves endogenous NO produced by iNOS, in addition to oxyradical formation; and 3) the deleterious role of NO during 48/80 treatment may be accounted for by a cytotoxic action of peroxynitrite, which is formed in the presence of NO and superoxide radicals.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号