首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进卡尔曼滤波的四维飞行航迹预测模型
引用本文:王涛波,黄宝军. 基于改进卡尔曼滤波的四维飞行航迹预测模型[J]. 计算机应用, 2014, 34(6): 1812-1815. DOI: 10.11772/j.issn.1001-9081.2014.06.1812
作者姓名:王涛波  黄宝军
作者单位:中国民航大学 空中交通管理学院,天津 300300
基金项目:国家自然科学基金委员会与中国民用航空局联合资助项目;中央高校基本科研业务费资助
摘    要:为解决空气动力学模型在四维飞行航迹预测中存在的参数过多、预测精度偏低等问题,提出了一种对预测模型中的系统噪声进行实时估计的改进卡尔曼滤波(IKF)算法。首先,对雷达数据进行处理,根据航空器飞行中航向、航速进行速度转换;然后,采用传统卡尔曼滤波(KF)算法和IKF算法分别建立航迹预测模型;最后通过同一实例计算,比较两种算法在X、Y、Z方向上的预测偏差,取偏差小者为优。实验结果表明:IKF算法在X、Y方向上的预测偏差比KF算法分别降低了17.65%和98.03%,而Z方向上采用KF算法有较小的预测偏差。此外,针对IKF算法进行不同时间间隔的预测分析,在进场飞行程序的保护区宽度(9.46km)范围内,预测间隔可以增大至20s。

关 键 词:空中交通管理  四维航迹  航迹预测  卡尔曼滤波  系统噪声
收稿时间:2013-11-25
修稿时间:2014-01-03

4D flight trajectory prediction model based on improved Kalman filter
WANG Taobo HUANG Baojun. 4D flight trajectory prediction model based on improved Kalman filter[J]. Journal of Computer Applications, 2014, 34(6): 1812-1815. DOI: 10.11772/j.issn.1001-9081.2014.06.1812
Authors:WANG Taobo HUANG Baojun
Affiliation:College of Air Traffic Management, Civil Aviation University of China, Tianjin 300300, China
Abstract:To solve the problem of too many parameters and low prediction precision in the traditional aerodynamic 4D trajectory prediction models, an Improved Kalman Filter (IKF) algorithm was proposed to estimate the 4D trajectory, which increased the accuracy of trajectory prediction through real-time estimation of system noise. First, according to the varying direction and velocity of aircraft during flight, the velocity was shifted. Then, the prediction models were set up separately by KF and IKF. Finally, by comparing the predictive deviations in X, Y and Z directions by two algorithms, the smaller one was selected. The simulation results illustrate that the deviations respectively reduce by 17.65% and 98.03% in X and Y directions by IKF; meanwhile, KF has higher accuracy in Z direction. Besides, according to the analysis of IKF in different time interval, within the width of protection zone of arrival procedure (9.46km), the time interval could be increased to 20s.
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号