首页 | 本学科首页   官方微博 | 高级检索  
     

一种适应于非完备标签数据和标签关联性的多标签分类方法
引用本文:张丽娜,戴灵鹏,匡泰. 一种适应于非完备标签数据和标签关联性的多标签分类方法[J]. 电信科学, 2016, 32(8): 82-89. DOI: 10.11959/j.issn.1000-0801.2016197
作者姓名:张丽娜  戴灵鹏  匡泰
作者单位:1. 浙江安防职业技术学院信息工程系,浙江 温州 325016;2. 温州大学生命与环境科学学院,浙江 温州 325035
基金项目:浙江省教育科学规划基金资助项目(2016SCG188),浙江省自然科学基金资助项目(No.LY14C03007)Education Science Department Foundation of Zhejiang Province(2016SCG188),The Natural Science Foundation of Zhejiang Province of China(LY14C03007)
摘    要:多标签分类已在很多领域得到了实际应用,所用标签大多具有很强的关联性,甚至存在非完备标签或部分标签遗失。然而,现有的多标签分类算法难以同时处理这两种情况。基于此,提出一种新的概率模型处理方法,实现同时对具有标签关联性和遗失标签情况进行多标签分类。该方法可以自动获知和掌握多标签的关联性。此外,通过整合遗失的标签信息,该方法能够提供一个自适应策略来处理遗失的标签。在完备标签和非完备标签的数据上进行实验,结果表明,与现有的多标签分类算法相比,提出的方法得到了较好的分类预测评价值。

关 键 词:非完备标签  标签关联性  多标签分类  概率模型  

A multi-label classification method for disposing incomplete labeled data and label relevance
Lina ZHANG,Lingpeng DAI,Tai KUANG. A multi-label classification method for disposing incomplete labeled data and label relevance[J]. Telecommunications Science, 2016, 32(8): 82-89. DOI: 10.11959/j.issn.1000-0801.2016197
Authors:Lina ZHANG  Lingpeng DAI  Tai KUANG
Affiliation:1. Department of Information Engineering,Zhejiang College of Security Technology,Wenzhou 325016,China;2. College of Life and Environmental Science,Wenzhou University,Wenzhou 325035,China
Abstract:Multi-label classification methods have been applied in many real-world fields,in which the labels may have strong relevance and some of them even are incomplete or missing.However,existing multi-label classification algorithms are unable to handle both issues simultaneously.A new probabilistic model that can automatically learn and exploit multi-label relevance was proposed on label relevance and missing label classification simultaneously.By integrating out the missing information,it also provides a disciplined approach to handle missing labels.Experiments on a number of real world data sets with both complete and incomplete labels demonstrated that the proposed method can achieve higher classification and prediction evaluation scores than the existing multi-label classification algorithms.
Keywords:incomplete label  label relevance  multi-label classification  probabilistic model
本文献已被 万方数据 等数据库收录!
点击此处可从《电信科学》浏览原始摘要信息
点击此处可从《电信科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号