首页 | 本学科首页   官方微博 | 高级检索  
     


Y2O3–Nd2O3 double stabilized ZrO2–TiCN nanocomposites
Authors:S Salehi  B Yüksel  K Vanmeensel  O Van der Biest  J Vleugels
Affiliation:Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, B-3001 Heverlee, Belgium
Abstract:Yttria-neodymia double stabilized ZrO2-based nanocomposites with 40 vol% electrical conductive TiCN were fully densified by means of pulsed electric current sintering (PECS) in the 1400–1500 °C range. The Y2O3 stabilizer content was fixed at 1 mol% whereas the Nd2O3 co-stabilizer content was varied between 0.75 and 2 mol% in order to optimise the mechanical properties. The mechanical (Vickers hardness, fracture toughness and bending strength), electrical (electrical resistivity) and microstructural properties were investigated and the hydrothermal stability in steam at 200 °C was assessed.The nanocomposites with 1–1.75 mol% Nd2O3, PECS at 1400 or 1450 °C, have an excellent fracture toughness of 8 MPa m1/2, although the grain size of both ZrO2 and TiCN phases after densification is in the 100 ± 30 nm range. Moreover, the composites combine a hardness of about 13 GPa, a bending strength of 1.1–1.3 GPa with a low electrical resistivity (1.6–2.2 × 10?5 Ω m) allowing electrical discharge machining. The hydrothermal stability of the double stabilizer nanocomposites was higher than for yttria-stabilized ZrO2-based composites with the same overall stabilizer content.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号