首页 | 本学科首页   官方微博 | 高级检索  
     


On minimal elements of upward-closed sets
Authors:Hsu-Chun Yen  Chien-Liang Chen
Affiliation:1. Department of Electrical Engineering, National Taiwan University, Taiwan, ROC;2. Department of Computer Science, Kainan University, Taiwan, ROC
Abstract:Upward-closed sets of integer vectors enjoy the merit of having a finite number of minimal elements, which is behind the decidability of a number of Petri net related problems. In general, however, such a finite set of minimal elements may not be effectively computable. In this paper, we develop a unified strategy for computing the sizes of the minimal elements of certain upward-closed sets associated with Petri nets. Our approach can be regarded as a refinement of a previous work by Valk and Jantzen (in which a necessary and sufficient condition for effective computability of the set was given), in the sense that complexity bounds now become available provided that a bound can be placed on the size of a witness for a key query. The sizes of several upward-closed sets that arise in the theory of Petri nets as well as in backward-reachability analysis in automated verification are derived in this paper, improving upon previous decidability results shown in the literature.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号