首页 | 本学科首页   官方微博 | 高级检索  
     


Impact of H2 addition on flame stability and pollutant emissions for an atmospheric kerosene/air swirled flame of laboratory scaled gas turbine
Authors:JP Frenillot  G Cabot  M Cazalens  B Renou  MA Boukhalfa
Affiliation:1. INSA de Rouen – CNRS CORIA UMR 6614, Université de Rouen, 8 Avenue de l''Université, 76800 Saint Etienne du Rouvray, France;2. SNECMA, 2 Rond Point René Ravaud, 77550 Moissy-Cramayel, France
Abstract:The purposes of this study are to compare the stability domains and the pollutant emissions when combustion occurs with and without addition of H2 to a kerosene (Jet A1)/air premixed prevaporised mixture injected in a lean gas turbine combustor. Chemiluminescence of CH*, pollutant emissions (NOx and CO) and pressure fluctuations data are simultaneously collected in order to determine the effects of H2 addition on the stability of the combustion and on the flame structure for an inlet temperature of 473 K, atmospheric pressure and for a large range of equivalence ratio (from 0.3 to 1). Addition of hydrogen enables keeping stable combustion conditions when, for the same kerosene mass flow, the flame becomes lifted and very unstable. As for pollutant emissions, results show that the equivalence ratio is the key parameter to control NOx emission even in the situation where the combustion power is increased due to H2 addition. As H2 addition strongly increases the flammability limits and the combustion stability domain, stable combustion can occur at leaner equivalence ratio and then decreases CO and NOx emissions. This is an important fact since no substitution effect takes place in the reduction of NOx and CO emissions. Study at constant combustion power and equivalence ratio by adjusting hydrogen and kerosene mass flow shows again a decrease in the pollutant emissions. Hydrogen injection in power generation systems using combustion seems to be a promising way in combustion research since due to the combined effects of enlarging combustion stability domain and reducing NOx emissions by substituting kerosene to the benefit of H2.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号