首页 | 本学科首页   官方微博 | 高级检索  
     


Forming process optimization for non-axisymmetrical complex component based on FEM simulation and experiment
Authors:Xu-bin Li  Zhi-min Zhang  Qiang Wang  Yong-biao Yang  Guo-jun Li
Affiliation:1. College of Material Science and Engineering, North University of China, No.3 Xue Yuan Road, Taiyuan, 030051, China
Abstract:Numerical and experimental investigations were carried out in order to reduce the forming load and defects for non-axisymmetrical complex components. The component with intricate shape and V-type high ribs was widely used as key load-bearing structures. Single-step integral loading with different billet shapes and two-step local loading schemes were used to simulate the forming process and study the metal flow laws. Forming processes of preforming and finisher were analyzed to predict the detail characteristics of material flow using the 3D finite element method models. The simulated results showed that the two-step local loading schemes significantly reduced the forming load and improved the metal filling formability without defects, the required forming load obviously lower than single-step integral. The occurrences of defects, forming loads, and velocity vector distributions were studied and a suitable preform and corresponding die designs were obtained. The experimental results also showed that the component could meet the requirements of dimensional accuracy and mechanical properties.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号