首页 | 本学科首页   官方微博 | 高级检索  
     


A 0.2-μm 180-GHz-fmax 6.7-ps-ECL SOI/HRS self-alignedSEG SiGe HBT/CMOS technology for microwave and high-speed digitalapplications
Authors:Washio   K. Ohue   E. Shimamoto   H. Oda   K. Hayami   R. Kiyota   Y. Tanabe   M. Kondo   M. Hashimoto   T. Harada   T.
Affiliation:Central Res. Lab., Hitachi Ltd., Tokyo;
Abstract:A technology for combining 0.2-μm self-aligned selective-epitaxial-growth (SEG) SiGe heterojunction bipolar transistors (HBTs) with CMOS transistors and high-quality passive elements has been developed for use in microwave wireless and optical communication systems. The technology has been applied to fabricate devices on a 200-mm SOI wafer based on a high-resistivity substrate (SOI/HRS). The fabrication process is almost completely compatible with the existing 0.2-μm bipolar-CMOS process because of the essential similarity of the two processes. SiGe HBTs with shallow-trench isolations (STIs) and deep-trench isolations (DTIs) and Ti-salicide electrodes exhibited high-frequency and high-speed capabilities with an fmax of 180 GHz and an ECL-gate delay of 6.7 ps, along with good controllability and reliability and high yield. A high-breakdown-voltage HBT that could produce large output swings for the interface circuit was successfully added. CMOS devices (with gate lengths of 0.25 μm for nMOS and 0.3 μm for pMOS) exhibited excellent subthreshold slopes. Poly-Si resistors with a quasi-layer-by-layer structure had a low temperature coefficient. Varactors were constructed from the collector-base junctions of the SiGe HBTs. MIM capacitors were formed between the first and second metal layers by using plasma SiO2 as an insulator. High-Q octagonal spiral inductors were fabricated by using a 3-μm thick fourth metal layer
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号