首页 | 本学科首页   官方微博 | 高级检索  
     


A comparative study of physical properties in Fe3O4 nanoparticles prepared by coprecipitation and citrate methods
Authors:Ahmad Gholizadeh
Affiliation:School of Physics, Damghan University (DU), Damghan, Iran
Abstract:Magnetite exhibits unique structural, electronic, and magnetic properties in extreme conditions that are of great research interest. In this work, the effects of preparation technique on X‐ray peak broadening, magnetic and elastic moduli properties of Fe3O4 nanoparticles prepared by coprecipitation (FcP‐NPs) and citrate (FC‐NPs) methods have been investigated. The structural characterization of the samples is evidence for a cubic structure with Fd‐3m space group. The Williamson‐Hall analysis was used to study crystallite sizes and lattice strain of the samples and also stress and energy density. In addition, the crystallite sizes are compared with the particle sizes and the magnetic core sizes obtained from TEM and VSM methods, respectively. In addition, the cation distribution obtained from calculated inversion parameter indicate that in the smaller particles, more amount of Fe2+ on the tetrahedral sites can be related to higher stress induced in the FcP‐NPs compared to the FC‐NPs. The saturation magnetization of the FcP‐NPs is almost two times bigger than the saturation magnetization of the FC‐NPs. It could be attributed to the decrease in the negative interaction on the octahedral site and also the magnetic moment on the tetrahedral site of the FcP‐NPs. The increase in force constants of the FC‐NPs determined by infrared spectra analysis compared to FcP‐NPs suggests the strengthening of their interatomic bonding. The values of shear and longitudinal wave velocities obtained from force constants have been used to determine the values of Young's modulus, rigidity modulus, bulk modulus, and Debye temperature. By comparison of the elastic results of FC‐NPs with the FcP‐NPs, we can observe that the elastic properties of the F‐NPs have been improved by synthesis method, while Poisson's ratio almost remains constant. In addition, using the values of the compliance sij obtained from elastic stiffness constants, the values of Young's modulus and Poisson's ratio along the oriented direction hkl] have been calculated for the samples.
Keywords:ferrites  x-ray method  magnetic materials/properties  fourier transform infrared spectroscopy  mechanical properties
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号