首页 | 本学科首页   官方微博 | 高级检索  
     


Phase formation and spectral evolution of (Sr,Ba)2Si(O,N)4:Eu2+ phosphors
Authors:Jaehan Park  Woohyun Jung  Young Jin Kim
Affiliation:1. Department of Advanced Materials Engineering, Kyonggi University, Suwon, Korea;2. Korea Refractories Ltd. Co., Dangjin, Korea;3. Wonik QnC Ltd. Co., Gumi, Korea
Abstract:Sr2‐xBaxSi(O,N)4:Eu2+ (SBxSON:Eu2+) oxynitridosilicate phosphors were prepared via incorporation of N3?, Eu2+, and Ba2+ ions into Sr2SiO4 (SSO) lattices. X‐ray diffraction patterns of the prepared powders revealed that SBxSON:Eu2+ was a solid‐solution form of SSO. An increase in x values caused a phase transition and an expansion of the unit cell. The photoluminescence excitation (PLE) spectra of SBxSON:Eu2+ were broad, covering the ultraviolet range to the visible range. Corresponding PL emission spectra strongly depended on the excitation wavelengths and consisted of two emission bands, one in the green‐blue region (A‐band) and the other in the red region (B‐band), which were assigned to Eu(I) and Eu(II), respectively. The B‐band resulted from a dramatic red‐shift of the green emission band assigned to Eu(II) of SSO:Eu2+, revealing that the nitridation process preferentially affected the Eu(II) sites. This behavior was explained by crystal field splitting, the fluorescence decay time, and thermal quenching. The Ba2+ substitution caused evolution of the PL spectra, and its effects on the spectra were discussed under consideration of ionic size and covalence.
Keywords:europium  luminescence  optical materials/properties  oxynitride  phosphors
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号