首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of T-stresses on fracture initiation for a closed crack in compression with frictional crack faces
Authors:Email author" target="_blank">Xian-Fang?LiEmail author  Guang-Lian?Liu  Kang?Yong?Lee
Affiliation:1.IMST, School of Civil Engineering and Architecture,Central South University,Changsha,China;2.School of Mechanical and Electrical Engineering,Central South University,Changsha,China;3.School of Mechanical Engineering,Yonsei University,Seoul,Korea
Abstract:This paper studies crack extension resulting from a closed crack in compression. The crack-tip field of such a crack contains a singular field relative to K II and non-singular T-stresses T x and T y parallel and perpendicular to the crack plane, respectively. Using a modified maximum tensile stress criterion with the singular and non-singular terms, the kinking angle at the onset of crack growth is determined by a two parameter field involving the mode-II stress intensity factors and T-stresses, and at fracture initiation a wing crack may be created at an arbitrary angle from 0° to 90°. A compressive T y increases the kinking angle and reinforces apparent mode-II fracture toughness, while a compressive T x decreases the kinking angle and enhances apparent mode-II fracture toughness. The direction and resistance of fracture onset is strongly affected by T-stresses as well as frictional stress. The von Mises effective stress is determined for small-scale yielding near the crack tip. The effective stress contour shape exhibits a marked asymmetrical behavior unless 2T x  = T y  ≤ 0 for plane stress state. Coulomb friction between two crack faces generally increases the kinking angle, shrinks the size enclosed by the effective stress contour and enhances apparent fracture toughness. Field evidence and experimental observations of many phenomena involving the growth of closed cracks in compression agree well with theoretical predictions of the present model.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号