首页 | 本学科首页   官方微博 | 高级检索  
     


Work-hardening and recovery mechanisms in gamma-based titanium aluminides
Authors:J D H Paul  F Appel
Affiliation:(1) the Institute for Materials Research, GKSS Research Center, D-21502 Geesthacht, Germany
Abstract:The work-hardening mechanisms in two-phase γ-titanium aluminide alloys were characterized in terms of the glide obstacles determining the velocity and slip path of dislocations, utilizing transmission electron microscopy (TEM) observations and thermodynamic-glide parameters. There was clear evidence that short-range obstacles in the form of dislocation debris and dipoles were produced during plastic deformation at room temperature. These dislocation obstacles contributed significantly to work hardening. The observed strong strain hardening arose from long-range elastic dislocation interactions and the production of dipole and debris defects. The thermal stability of these deformation-induced defects was assessed by isothermal and isochronal annealing. The results indicated that the dipole and debris defects were relatively unstable upon annealing at moderately high temperatures, which led to significant recovery of work hardening. This article is based on a presentation made in the symposium entitled “Fundamentals of Structural Intermetallics,” presented at the 2002 TMS Annual Meeting, February 21–27, 2002, in Seattle, Washington, under the auspices of the ASM and TMS Joint Committee on Mechanical Behavior of Materials.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号