首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of Moment-to-Shear Ratio on Combined Cyclic Load-Displacement Behavior of Shallow Foundations from Centrifuge Experiments
Authors:Sivapalan Gajan  Bruce L. Kutter
Affiliation:1Assistant Professor, Dept. of Civil Engineering, North Dakota State Univ., 1410, 14th Ave. N, Fargo, ND 58105 (corresponding author). E-mail: s.gajan@ndsu.edu
2Professor, Dept. of Civil and Environmental Engineering, Univ. of California, One Shields Ave., Davis, CA 95616.
Abstract:Current design guidelines for shallow foundations supporting building and bridge structures discourage footing rocking or sliding during seismic loading. Recent research indicates that footing rocking has the potential to reduce ductility demands on structures by dissipating earthquake energy at the footing-soil interface. Concerns over cyclic and permanent displacements of the foundation during rocking and sliding along with the dependence of foundation capacity on uncertain soil properties hinder the use of footing rocking in practice. This paper presents the findings of a series of centrifuge experiments conducted on shear wall-footing structures supported by dry dense to medium dense sand foundations that are subjected to lateral cyclic loading. Two key parameters, static vertical factor of safety (FSV), and the applied normalized moment-to-shear ratio (M/(H?L)) at the footing-soil interface, along with other parameters, were varied systematically and the effects of these parameters on footing-soil system behavior are presented. As expected, the ratio of moment to the horizontal load affects the relative magnitude of rotational and sliding displacement of the footing. Results also show that, for a particular FSV, footings with a large moment to shear ratio dissipate considerably more energy through rocking and suffer less permanent settlement than footings with a low moment to shear ratio. The ratio of actual footing area (A) to the area required to support the vertical and shear loads (Ac), called the critical contact area ratio (A/Ac), is used to correlate results from tests with different moment to shear ratio. It is found that footings with similar A/Ac display similar relationships between cyclic moment-rotation and cumulative settlement, irrespective of the moment-to-shear ratio. It is suggested that shallow foundations with a sufficiently large A/Ac suffer small permanent settlements and have a well defined moment capacity; hence they may be used as effective energy dissipation devices that limit loads transmitted to the superstructure.
Keywords:Footings  Settlement  Cyclic loads  Shallow foundations  Centrifuge models  Seismic loads  
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号