首页 | 本学科首页   官方微博 | 高级检索  
     


Evaluation of the impact of finite-resolution effects on scintillation compensation using two deformable mirrors.
Authors:J D Barchers
Affiliation:Starfire Optical Range, Directed Energy Directorate, U.S. Air Force Research Laboratory, Kirtland Air Force Base, New Mexico 87117, USA.
Abstract:The impact of finite-resolution deformable mirrors and wave-front sensors is evaluated as it applies to fullwave conjugation using two deformable mirrors. The first deformable mirror is fixed conjugate to the pupil, while the second deformable mirror is at a finite range. The control algorithm to determine the mirror commands for the two deformable mirrors is based on a modification of the sequential generalized projection algorithm. The modification of the algorithm allows the incorporation of Gaussian spatial filters into the optimization process to limit the spatial-frequency content applied to the two deformable mirrors. Simulation results are presented for imaging and energy projection scenarios that establish that the optimal spatial filter waist to be applied is equal to the subaperture side length in strong turbulence. The effect of varying the subaperture side length is examined, and it is found that to effect a significant degree of scintillation compensation, the subapertures, and corresponding spacing between actuators, must be much smaller than the coherence length of the input field.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号