首页 | 本学科首页   官方微博 | 高级检索  
     

基于LS-SVM模糊推理的谷氨酸发酵过程流加控制
引用本文:王鲜芳,杜志勇,潘丰. 基于LS-SVM模糊推理的谷氨酸发酵过程流加控制[J]. 计算机应用研究, 2009, 26(4): 1386-1388
作者姓名:王鲜芳  杜志勇  潘丰
作者单位:江南大学,通信与控制工程学院,自动化研究所,江苏无锡,214122;河南科技学院,信息工程系,河南,新乡,453003;河南机电高等专科学校,河南,新乡,453002;江南大学,通信与控制工程学院,自动化研究所,江苏无锡,214122
基金项目:国家“863”计划资助项目(2006AA020301-11)
摘    要:针对发酵过程发酵阶段具有模糊性的特点,提出了采用最小二乘支持向量机(least square support vector machines, LS-SVM)提取并简化模糊规则的推理优化控制方法。利用能够在线测量的物理量,如CO2生成速率和NH3的添加量等,在线判定发酵过程所处的阶段,然后依据加权平均的方法确定各个时刻葡萄糖的流加策略,完成了对分段连续流加补料的稳定控制。通过实际应用,证明了该方法的有效性。

关 键 词:模糊推理  最小二乘支持向量机  优化控制  发酵过程

Optimized control of glutamic acid fermentation process based on fuzzy inference of LS-SVM
WANG Xian-fang,DU Zhi-yong,PAN Feng. Optimized control of glutamic acid fermentation process based on fuzzy inference of LS-SVM[J]. Application Research of Computers, 2009, 26(4): 1386-1388
Authors:WANG Xian-fang  DU Zhi-yong  PAN Feng
Affiliation:(1.Institute of Automation, School of Communication & Control Engineering, JiangnanUniversity, WuxiJiangsu 214122, China; 2. Dept. of Information Engineering, Henan Institute of Science & Technology, XinxiangHenan 453003, China; 3. College of Henan Mechanical & Electrical Engineering, XinxiangHenan453002, China)
Abstract:According to the characteristics of fuzzy during the stage of fermentation process,a fuzzy inference method based on least squares support vector machines is proposed,which can be distilled and simplified the fuzzy rule.Utilizing the on line measurement of physical quantities such as CO2 production rate and the amount of NH3,and so on,to determine online the stage fermentation process,and then the glucose-plus strategy is obtained based on the method of weighted average every time,the stability control of t...
Keywords:fuzzy inference   LS-SVM   optimized control   fermentation process
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号