首页 | 本学科首页   官方微博 | 高级检索  
     


Processing and characterization of ZrB2-based ultra-high temperature monolithic and fibrous monolithic ceramics
Authors:W G Fahrenholtz  G E Hilmas  A L Chamberlain  J W Zimmermann
Affiliation:(1) Department of Ceramic Engineering, University of Missouri-Rolla, Rolla, MO 65409, USA
Abstract:Zirconium diboride (ZrB2) based ultra-high temperature ceramics either unmodified or with SiC particulate additions of 10, 20, or 30 volume percent were prepared by conventional hot pressing. The ZrB2-SiC compositions had improved four-point bend strength compared to the ZrB2 prepared in our laboratory as well as other reported ZrB2 or ZrB2-SiC materials. Strength and toughness increased as the amount of SiC increased. Measured strengths ranged from sim550 MPa for ZrB2 to over 1000 MPa for ZrB2-30% SiC. Likewise, toughness increased from 3.5 MPa to more than 5 MPa over the same composition range. The addition of SiC also improved oxidation resistance compared to pure ZrB2.Co-extrusion processing was used to produce ZrB2-based ultra-high temperature ceramics with a fibrous monolithic structure. Samples had dense ZrB2-30 vol% SiC cells approximately 100 mgrm in diameter surrounded by porous ZrB2 cell boundaries approximately 20 mgrm thick. ZrB2-based fibrous monoliths had four point bend strength of sim450 MPa, about half of a conventional ZrB2-SiC ceramic with the cell composition. Preliminary analysis of fracture behavior found that ZrB2-based fibrous monoliths did not exhibit graceful failure because the difference in strength between the cell and cell boundary of the current materials was not sufficient.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号