首页 | 本学科首页   官方微博 | 高级检索  
     


Sequences of fracture toughness micromechanisms in PP/CaCO3 nanocomposites
Authors:R Lesan Khosh  R Bagheri  S Zokaei
Affiliation:Polymeric Materials Research Group, Department of Materials Science and Engineering, Sharif University of Technology, Tehran 11365‐9466, Iran
Abstract:Mechanical properties and fracture toughness micromechanisms of copolypropylene filled with different amount of nanometric CaCO3 (5–15 wt %) were studied. J‐integral fracture toughness was incorporated to measure the effect of incorporation of nanoparticle into PP matrix. Crack‐tip damage zones and fracture surfaces were studied to investigate the effect of nanofiller content on fracture toughness micromechanisms. It was found that nanofiller acted as a nucleating agent and decreased the spherulite size of polypropylene significantly. J‐integral fracture toughness (Jc) of nanocomposites was improved dramatically. The Jc value increased up to approximately two times that of pure PP at 5 wt % of nano‐CaCO3. The fracture micromechanisms varied from rubber particles cavitation and shear yielding in pure PP to simultaneous existence of rubber particles cavitation, shear yielding, filler particles debonding, and crazing in PP/CaCO3 nanocomposites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008
Keywords:nanocomposites  polymer‐matrix composites  fracture toughness  crack
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号