首页 | 本学科首页   官方微博 | 高级检索  
     


Preparation and degradability of poly(lactic acid)–poly(ethylene glycol)–poly(lactic acid)/SiO2 hybrid material
Authors:Hualin Wang  Yan Zhang  Min Tian  Linfeng Zhai  Zheng Wei  Tiejun Shi
Affiliation:School of Chemical Technology, Hefei University of Technology, Hefei, Anhui 230009, China
Abstract:Poly(lactic acid)–poly(ethylene glycol)–poly(lactic acid) (PLA‐PEG‐PLA)/SiO2 hybrid material is prepared by sol–gel method using tetraethoxysilane (TEOS) and PLA‐PEG‐PLA as raw material. From Fourier transform infrared spectroscopy (FTIR) and X‐ray photoelectron spectroscopy (XPS) spectra, the hydroxyl groups of the silica sol derived from partially hydrolysis of TEOS and the unhydrolyzed ethoxy groups of TEOS can react with PLA‐PEG‐PLA. Differential scanning calorimetry (DSC) curves imply that the glass transition temperature (Tg) of PLA‐PEG‐PLA/SiO2 hybrid material is higher than that of PLA‐PEG‐PLA and increases with the increase of silica content. X‐ray diffraction (XRD) analysis results show that PLA‐PEG‐PLA and PLA‐PEG‐PLA/SiO2 hybrid material are both amorphous. Field scanning electron microscope (FSEM) photographs show that when PLA‐PEG‐PLA/SiO2 hybrid material has been degraded for 12 weeks in normal saline at 37°C, a three‐dimensional porous scaffold is obtained, which is available for cell growth and metabolism. Moreover, the hydroxyl (? OH) groups on SiO2 of PLA‐PEG‐PLA/SiO2 hybrid material could buffer the acidity resulted from the degradation of PLA, which is beneficial to proliferation of cell in tissue repairing. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008
Keywords:PLA‐PEG‐PLA/SiO2 hybrid material  preparation  sol–  gel process  degradability
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号