首页 | 本学科首页   官方微博 | 高级检索  
     

基于支持向量机的压裂井层优选
引用本文:杨位民,田芳,龚声蓉. 基于支持向量机的压裂井层优选[J]. 计算机工程, 2006, 32(7): 247-249
作者姓名:杨位民  田芳  龚声蓉
作者单位:1. 北京航空航天大学计算机学院,北京,100083
2. 大庆油田第八采油厂,大庆163514
3. 苏州大学计算机科学系
摘    要:压裂是油田重要的增产措施,合理选择压裂井层是一项十分复杂的工作。在对影响压裂效果的各种因素综合分析的基础上,提出了基于支持向量机技术的压裂效果预测方法。采用该方法,利用油田开发动、静态数据,构建了压裂井层优选的支持向量机模型,对大庆油田采油八厂样本进行处理,符合率达89%以上,并在不同数目学习样本的情况下同模糊神经网络作了比较,性能远优于模糊神经网络,可很好地克服过学习问题。

关 键 词:支持向量机  神经网络  预测  压裂效果
文章编号:1000-3428(2006)07-0247-03
收稿时间:2005-04-07
修稿时间:2005-04-07

Optimized Determination of Fractured Well Layers Based on Support Vector Machine
YANG Weimin,TIAN Fang,GONG Shengrong. Optimized Determination of Fractured Well Layers Based on Support Vector Machine[J]. Computer Engineering, 2006, 32(7): 247-249
Authors:YANG Weimin  TIAN Fang  GONG Shengrong
Affiliation:1. Institute of Computer, Beijing University of Aeronautics and Astronautics, Beijing 100083; 2. No.8 Oil Production Factory of Daqing Oilfield, Daqing 163514; 3. Departmemt of Computer, Suzhou Univesity
Abstract:Fracturation is an important measure to increase oil production, and it is complicated to select a well layer to be fractured. A new method for predicting the fracturing effect with support vector machine is developed on the basis of a comprehensive analysis on various factors affecting fracturing effect, Using the method, an optimized model based on support vector machine for determinating fractured well layers is constructed by oil exploiting dynamic and static data, Samples of No.8 Oil Production Factory of Daqing Oilfield are processed, with the coincidence above 89%. At the same time, the performance comparison with fuzzy neural network under different sample scales shows that SVM is much better than FNN and the overfitting problem is overcomed perfectly.
Keywords:Support vector machine   Neural network   Prediction   Fracturing effect
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号