首页 | 本学科首页   官方微博 | 高级检索  
     

基于复杂网络社团划分的网络流量分类
引用本文:蔡君,余顺争. 基于复杂网络社团划分的网络流量分类[J]. 计算机科学, 2011, 38(3): 80-82
作者姓名:蔡君  余顺争
作者单位:1. 中山大学电子与通信工程系,广州,510275;广东技术师范学院电子与信息学院,广州,510665
2. 中山大学电子与通信工程系,广州,510275
基金项目:本文受国家高技术研究发展计划((863)(2007AA01Z449),国家自然科学基金(60970146)和国家自然科学基金-广东联合基金重点项目(U0735002)资助。
摘    要:随着网络的高速发展以及各种应用的不断涌现,采用端口号映射或有效负载分析的方法进行流量分类与应用识别已难以满足应用的需求。以流为网络节点、流之间统计特征的相似度为边,构建流相关网络模型,利用Newman快速社团划分算法(NFCD)对流相关网络模型进行社团划分,得到了流的聚类结果,实现了网络流量的分类,并与先前的两种无监督的流量分类算法(K-Means,DBSCAN)进行了对比。实验结果显示,利用NFCD算法具有更高的准确率,并能产生更好的聚类效果,且不受输入参数影响。

关 键 词:流量分类,无监督聚类,社团划分,复杂网络

Internet Traffic Classification Based on Detecting Community Structure in Complex Network
CAI Jun,YU Shun-zheng. Internet Traffic Classification Based on Detecting Community Structure in Complex Network[J]. Computer Science, 2011, 38(3): 80-82
Authors:CAI Jun  YU Shun-zheng
Affiliation:(Department of Electronic and Communication Engineering,Sun Yat-Sen University,Guangzhou 510275,China);(School of Electronic and Information,Guangdong Polytechnic Normal University,Guangzhou 510665,China)
Abstract:In recent years, Internet traffic classification using port based or payload-based methods is becoming increasingly difficult with peer-to-peer(P2P) applications using dynamic port numbers,masquerading techniques, and encryption to avoid detection. Because supervised clustering algorithm needs accuracy of training sets and it can not classify unknown apphcation,we introduced complex network's community detecting algorithm,a new unsupervised classify algorithm, which has previously not been used for network traffic classification. We evaluated this algorithm and compared it with the previously used unsupervised K-means and DBSCAN algorithm, using empirical Internet traces. The experiment results show complex network's community detecting algorithm works very well in accuracy and produces better clusters, besides, complex network's community detecting algorithm need not know the number of the traffic application beforehand.
Keywords:Traffic classification  Unsupervised clustering  Community detecting algorithm  Complex network
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号