首页 | 本学科首页   官方微博 | 高级检索  
     


Investigations on the low voltage cathodoluminescence stability and surface chemical behaviour using Auger and X-ray photoelectron spectroscopy on LiSrBO3:Sm phosphor
Authors:Shreyas S Pitale
Affiliation:Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA9300, South Africa
Abstract:Orange-red emissive LiSrBO3:Sm3+ phosphors were synthesized through the solid-state reaction method. Under UV radiation (221 nm) and low-voltage electron beam (2 keV, 12 mA/cm2) excitation, the Sm3+ doped LiSrBO3 phosphor shows emission corresponding to the characteristic 4G5/2-6H7/2 transitions of Sm3+ with the strongest emission at 601 nm. A high stability of cathodoluminescence (CL) emission during prolong electron bombardment with low-energy electrons was observed. Surface sensitive diagnostic tools such as Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) were used to study the surface chemistry. AES results revealed modifications in the surface concentrations of Li, Sr, B, O and C on the surface of the LiSrBO3:Sm3+ phosphor as indicated by the changes in their Auger peak to peak heights (APPH) as a function of electron dose. Observed changes in the high resolution XPS spectra of the LiSrBO3:Sm3+ surface irradiated with the low energy electron beam provide evidence of compositional and structural changes as a result of the electron beam stimulated surface chemical reactions (ESSCRs). Additional SrO2 was identified by XPS on the phosphor surface after it received an electron dose of 300 C/cm2 together with the increase in the concentrations of chemical species containing the B-C-O bonding. The new surface chemical species formed during electron beam bombardment are possibly responsible for the stability of the CL in the LiSrBO3:Sm3+ phosphor.
Keywords:X-ray photoelectron spectroscopy  LiSrBO3  Cathodoluminescence degradation  Auger electron spectroscopy  ESSCR
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号