首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习的低照度图像增强方法
引用本文:马悦. 基于深度学习的低照度图像增强方法[J]. 信息技术, 2021, 0(1): 85-89
作者姓名:马悦
作者单位:1.陕西中医药大学
摘    要:在低照度环境下采集的图像往往亮度不足,导致在后续视觉任务中难以有效利用.针对这一问题,过去的低照度图像增强方法大多在极度低光场景中表现失败,甚至放大了图像中的底层噪声.为了解决这一难题,本文提出了 一种新的基于深度学习的端到端神经网络,该网络主要通过空间和通道双重注意力机制来抑制色差和噪声,其中空间注意力模块利用图像的...

关 键 词:图像增强  低照度图像  深度学习  注意力机制

Low-light image enhancement method based on deep learning
MA Yue. Low-light image enhancement method based on deep learning[J]. Information Technology, 2021, 0(1): 85-89
Authors:MA Yue
Affiliation:(Shaanxi University of Chinese Medicine,Xianyang 712046,Shaanxi Province,China)
Abstract:Images acquired in low-light environments are often not bright enough,making them difficult to use effectively in subsequent visual tasks.In response to this problem,most of the past low-light image enhancement methods have failed in extreme low-light scenes and even magnified the underlying noise in the image.In order to solve this problem,this paper proposes a new end-to-end neural network based on deep learning,which is primarily based on spatial and channel dual attention mechanism to suppress chromatic aberration and noise.The spatial attention module uses the non-local correlation of the image for denoising,and the channel attention module is used to guide the network to refine the redundant color features.The experimental results show that the method in this paper is further improved in both subjective visual and objective evaluation metrics compared to other mainstream algorithms.
Keywords:image enhancement  low-light image  deep learning  attention mechanism
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号