首页 | 本学科首页   官方微博 | 高级检索  
     

超薄四面体非晶碳膜的结构和性能
引用本文:许世鹏,王华,陈维铅,李玉宏,李玉军,汪爱英. 超薄四面体非晶碳膜的结构和性能[J]. 材料研究学报, 2020, 34(5): 379-384. DOI: 10.11901/1005.3093.2019.265
作者姓名:许世鹏  王华  陈维铅  李玉宏  李玉军  汪爱英
作者单位:1.甘肃省太阳能发电系统工程重点实验室 酒泉职业技术学院 酒泉 7350002.中国科学院海洋新材料与应用技术重点实验室 浙江省海洋材料与防护技术重点实验室;中国科学院宁波材料技术与工程研究所 宁波 3152013.酒泉新能源研究院 酒泉 735000
基金项目:国家自然科学基金(51772307);甘肃省科技创新服务平台专项(1505JTCF039);甘肃省高等学校科研项目(2019A-248,2020A-267)。
摘    要:使用磁过滤阴极真空电弧(FCVA)技术制备不同厚度的超薄四面体非晶碳膜(ta-C),研究了表征和测量超薄ta-C碳膜微观结构和性能的方法以及膜厚的影响。使用X射线衍射仪验证椭圆偏振光谱仪联用分光光度计表征膜厚度的可靠性并测量了膜密度;用拉曼谱分析薄膜的内在结构,验证用椭偏联用分光光度计表征sp^3C含量的可靠性;用Stoney,s公式计算了薄膜的残余应力。结果表明,薄膜的厚度由7.6 nm增大到33.0 nm其沉积速率变化不大,为1.7±0.1 nm/min;根据椭偏联用分光光度计的表征结果,薄膜中sp^3C的含量逐渐减少,拓扑无序度降低,与拉曼谱的表征结果一致;厚度为7.6 nm的超薄ta-C碳膜中p^3C的含量最高;随着厚度的增大薄膜中的残余压应力从14 GPa降低到5 GPa;厚度为11.0 nm的薄膜主体层密度最大,为3070 kg/m^3,致密性较好;厚度对薄ta-C碳膜表面粗糙度的影响较小。用椭偏和分光光度计测量超薄ta-C碳膜的厚度和表征显微结构是可行的,X射线反射法可用于测量超薄ta-C碳膜密度和表面粗糙度,但是对薄膜的质量要求较高。

关 键 词:无机非金属材料  膜厚  表征  TA-C
收稿时间:2019-05-22

Structure and Properties of Ultrathin Tetrahedral Amorphous Carbon Films
XU Shipeng,WANG Hua,CHEN Weiqian,LI Yuhong,LI Yujun,WANG Aiying. Structure and Properties of Ultrathin Tetrahedral Amorphous Carbon Films[J]. Chinese Journal of Materials Research, 2020, 34(5): 379-384. DOI: 10.11901/1005.3093.2019.265
Authors:XU Shipeng  WANG Hua  CHEN Weiqian  LI Yuhong  LI Yujun  WANG Aiying
Affiliation:(Jiuquan Vocational and Technical College,Gansu Key Laboratory of Solar Power Generation System Project,Jiuquan 735000,China;Key Laboratory of Marine Materials and Related Technologies,Zhejiang Key Laboratory of Marine Materials and Protective Technologies,Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Ningbo 315201,China;Jiuquan New Energy Research Institute,Jiuquan 735000,China)
Abstract:Ultrathin tetrahedral amorphous carbon (ta-C) films with different film thickness were prepared by filtered cathodic vacuum arc technique. The accurate measurement of the film thickness and sp3C content of the ultrathin ta-C films was conducted by means of ellipsometry combined with spectrophotometry. The acquired film thickness was further verified by XRD. The film density was acquired from the results of precise determination of lattice parameters. Raman spectroscopy were conducted to characterize the atomic bond structure of as-prepared film. The residual stress was calculated from the curvature of the film/substrate composite using Stoneys equation. Results show that as the film thickness increased from 7.6 to 33.0 nm there was no obvious change of the ultrathin ta-C film growth rate, which keeps constant as 1.7±0.1 nm/min, while the residual compressive stress and sp3 fraction decreased; for the film of thickness 7.6 nm the maximal sp3 fraction was obtained. The results are consistent with Raman's. For the film of thickness 11.0 nm, the maximal bulk layer density was 3070 kg/m3. The film thickness had no obvious influence on surface roughness of ultrathin ta-C films. In summary, ellipsometry combined with spectrophotometry is of feasible means for characterizing the structure and thickness of the ultrathin ta-C films. X-ray reflection can be used to measure the density and surface roughness of ultrathin ta-C carbon films of high quality.
Keywords:inorganic non-metallic materials  characterization  thickness  ta-C  
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《材料研究学报》浏览原始摘要信息
点击此处可从《材料研究学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号