首页 | 本学科首页   官方微博 | 高级检索  
     

一种恶意代码变种检测的有效方法
引用本文:韩小素,庞建民,岳峰. 一种恶意代码变种检测的有效方法[J]. 计算机安全, 2010, 0(9): 53-57
作者姓名:韩小素  庞建民  岳峰
作者单位:信息工程大学,信息工程学院,河南,郑州,450002;信息工程大学,信息工程学院,河南,郑州,450002;信息工程大学,信息工程学院,河南,郑州,450002
基金项目:国家高技术研究发展计划(863)项目
摘    要:为了改变基于特征码病毒查杀存在的滞后性,以及对于恶意代码变种的无效性,提出了一种基于支持向量机和模糊推理技术的恶意代码及其变种的检测方法。基于Radux原型系统,通过使用多分类机,将恶意程序进一步细分为病毒、蠕虫和木马程序,然后进行恶意代码判定的模糊推理,使得未知病毒的检测概率进一步提升,对于已有恶意程序的检测率高达99.03%,对于恶意程序变种的检测率达到93.38%。

关 键 词:支持向量机  模糊推理  Radux  恶意代码检测  恶意代码变种

An Effective Method for Variant of Malicious Code Detection
HAN Xiao-su,PANG Jian-min,YUE Feng. An Effective Method for Variant of Malicious Code Detection[J]. Network & Computer Security, 2010, 0(9): 53-57
Authors:HAN Xiao-su  PANG Jian-min  YUE Feng
Affiliation:(Institute of Information Engineering,Information Engineering University,Zhengzhou,Henan 450002,China)
Abstract:To change the lag caused by signature-based virus checking and killing,and the invalidity of malicious code variants,proposed a support vector machine and fuzzy reasoning and its variants of malicious code detection method.Prototype system based on Radux,through the using of multi-classifier,the malicious program is further broken down as viruses,worms and Trojan horse programs,malicious code and then determine the fuzzy reasoning,making detection of unknown viruses to further enhance the probability of looking for malicious programs have been 99.03% detection rate,for mutation detection rate of malicious programs to 93.38%.
Keywords:Support Vector Machine  Fuzzy Reasoning  Reverse Analysis for Detecting Unsafe eXecutables  Malicious Code Detection  Malicious Code Variants
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号