首页 | 本学科首页   官方微博 | 高级检索  
     


Microstructural Characterization of Cofired Tungsten-Metallized High-Alumina Electronic Substrates
Authors:Gesa Behrens  Arthur H Heuer
Affiliation:Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106
Abstract:Microstructural characterization of a high-Al2O3 substrate containing cofired thick-film tungsten metallization, with particular emphasis on the metal/ceramic interface, was conducted. The substrate contained tabular Al2O3 grains surrounded by a continuous calcium magnesium aluminum silicate glass containing particles of monoclinic ZrO2 and reduced rutile (TiO2- x ). The metal/ceramic adhesion was caused by mechanical interlocking between the W and Al2O3 grains by the glass phase which penetrated the porous W layers during sintering; there was no interfacial reaction or diffusion zone. The mechanical properties of the W metallization did not limit interfacial strength. Heat treatments of the substrate at 1400 K in air and under vacuum resulted in the devitrification of the intergranular glass. The most abundant devitrification product was anorthite (CaAl2Si2O8), accompanied by magnesium aluminate titanate, magnesium aluminate spinel, α-cristobalite (SiO2), and α-cordierite (Mg2Al4Si5O18). In addition, small rutile particles precipitated within the Al2O3 grains.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号