首页 | 本学科首页   官方微博 | 高级检索  
     

CMvSC:知识迁移下的深度一致性多视图谱聚类网络
引用本文:张熠玲,杨燕,周威,欧阳小草,胡节. CMvSC:知识迁移下的深度一致性多视图谱聚类网络[J]. 软件学报, 2022, 33(4): 1373-1389
作者姓名:张熠玲  杨燕  周威  欧阳小草  胡节
作者单位:西南交通大学 计算机与人工智能学院, 四川 成都 611756
基金项目:国家自然科学基金(61976247)
摘    要:谱聚类是聚类分析中极具代表性的方法之一,由于其对数据结构没有太多假设要求,受到了研究者们的广泛关注.但传统的谱聚类算法通常受到谱嵌入的可扩展性和泛化性的限制,即:无法应对大规模设置和复杂数据分布.为克服以上缺陷,旨在引入深度学习框架提升谱聚类的泛化能力与可扩展能力,同时,结合多视图学习挖掘数据样本的多样性特征,从而提出...

关 键 词:谱嵌入  近邻学习  知识迁移  多视图聚类  深度聚类
收稿时间:2021-05-29
修稿时间:2021-07-16

CMvSC: Knowledge Transferring Based Deep Consensus Network for Multi-view Spectral Clustering
ZHANG Yi-Ling,YANG Yan,ZHOU Wei,OUYANG Xiao-Cao,HU Jie. CMvSC: Knowledge Transferring Based Deep Consensus Network for Multi-view Spectral Clustering[J]. Journal of Software, 2022, 33(4): 1373-1389
Authors:ZHANG Yi-Ling  YANG Yan  ZHOU Wei  OUYANG Xiao-Cao  HU Jie
Affiliation:School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu 611756, China
Abstract:Spectral clustering, which is one of the most representative methods in clustering analysis, reveives much attention from scholars, because it does not constrain the data structure of the original samples. However, traditional spectral clustering algorithm usually contains two major limitations, i.e. it is unable to cope with the large-scale settings and complex data distribution. To overcome the above shortcomings, in this paper, we introduce a deep learning framework to improve the generalization and scalability of spectral clustering, and combine the multi-view learning to mine diverse features among data samples, finally propose a knowledge transferring based deep Consensus network for Multi-view Spectral Clustering (CMvSC). First, considering the local invariance of single view, CMvSC adopts the local learning layer to learn the specific embedding of each view individually; Then, because of the global consistency among multiple views, CMvSC introduces the global learning layer to achieve paramenter sharing and feature transferring, and learns the shared embedding in different views; Meanwhile, taking the effect of affinity matrix for spectral clustering into consideration, CMvSC learns the affinity correlation between the paired samples by training the siamese network and designing the contrastive loss, which replaces the distance metric in tranditional spectral clustering. Finally, the experimental results on four datasets demonstrate the effectiveness of our CMvSC for multi-view clustering.
Keywords:spectral embedding  affinity learning  knowledge transferring  multi-view clustering  deep clustering
点击此处可从《软件学报》浏览原始摘要信息
点击此处可从《软件学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号