首页 | 本学科首页   官方微博 | 高级检索  
     


Enhancement of flexural behaviour of CFRP-strengthened reinforced concrete beams using engineered cementitious composites transition layer
Abstract:This paper aimed to develop and evaluate an efficient strengthening method for reinforced concrete beams, based on engineered cementitious composites (ECC) to be applied as a transition layer prior to the application of the carbon fibre-reinforced polymer (CFRP) strengthening sheet. The role of the proposed transition layer is to control the cracking of concrete and detain or even avoid premature de-bonding of the strengthening CFRP sheets. As the ability of the transition layer to exhibit a strain hardening behaviour is mainly dependent on the used fibre volumetric ratio, three ECC mixes with three different polypropylene fibre volumetric ratios were used (fibre volumetric ratio of 0.5%, 1% and 1.5%). The experimental results showed that while the used CFRP strengthening sheet can increase the ultimate load by about 28.8% compared with the control un-strengthened beam, this increase can reach about 48.5% by applying the same CFRP sheet to the proposed ECC transition layer that contains a fibre volumetric ratio of 1.5%. Moreover, this layer integrated with the mention ratio of the fibre content enabled the CFRP sheet to be in a complete contact with the strengthened beam without any de-bonding up the rupture of the CFRP sheet at failure.
Keywords:crack width  cracks spacing  carbon fibre-reinforced polymers  ductility  engineered cementitious composites  reinforced concrete beams  strengthening
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号