首页 | 本学科首页   官方微博 | 高级检索  
     

AlphaQO:鲁棒的学习型查询优化器
引用本文:余翔,柴成亮,张辛宁,汤南,孙佶,李国良. AlphaQO:鲁棒的学习型查询优化器[J]. 软件学报, 2022, 33(3): 814-831
作者姓名:余翔  柴成亮  张辛宁  汤南  孙佶  李国良
作者单位:清华大学计算机科学与技术系,北京100084;浙江大学计算机科学与技术学院,浙江杭州310027;Qatar Computing Research Institute,Hamad Bin Khalifa University,Doha,Qatar
基金项目:国家自然科学基金(61925205,61632016);华为和好未来
摘    要:由深度学习驱动的学习型查询优化器正在越来越广泛地受到研究者的关注,这些优化器往往能够取得近似甚至超过传统商业优化器的性能.与传统优化器不同的是,一个成功的学习型优化器往往依赖于足够多的高质量的负载查询作为训练数据.低质量的训练查询会导致学习型优化器在未来的查询上失效.提出了基于强化学习的鲁棒的学习型查询优化器训练框架A...

关 键 词:学习型优化器  鲁棒性  AI4DB  数据库  强化学习  查询生成
收稿时间:2021-07-01
修稿时间:2021-07-31

AlphaQO: Robust Learned Query Optimizer
YU Xiang,CHAI Cheng-Liang,ZHANG Xin-Ning,TANG Nan,SUN Ji,LI Guo-Liang. AlphaQO: Robust Learned Query Optimizer[J]. Journal of Software, 2022, 33(3): 814-831
Authors:YU Xiang  CHAI Cheng-Liang  ZHANG Xin-Ning  TANG Nan  SUN Ji  LI Guo-Liang
Affiliation:Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China;Department of Computer Science and Technology, Zhejiang University, Zhejiang 310027, China;Qatar Computing Research Institute, HKBU, Qatar
Abstract:Learned database query optimizers,which are typically empowered by (deep) learning models,have attracted significant attention recently,because they can offer similar or even better performance than the state-of-the-art commercial optimizers that require hundreds of expert-hours to tune.A crucial factor of successfully training learned optimizers is training queries.Unfortunately,a good query workload that is sufficient for training learned optimizers is not always available.In this paper,we propose a novel framework,called AlphaQO,on generating Queries for learned Optimizers with reinforcement learning (RL).AlphaQO is a loop system that consists of two main components,query generator and learned optimizer.Query generator aims at generating hard queries (i.e.,those queries that the learned optimizer provides poor estimates).The learned optimizer will be trained using generated queries,as well as providing feedbacks (in terms of numerical rewards) to the query generator.If the generated queries are good,the query generator will get a high reward; otherwise,the query generator will get a low reward.The above process is performed iteratively,with the main goal that within a small budget,the learned optimizer can be trained and generalized well to a wide range of unseen queries.Extensive experiments show that AlphaQO can generate a relatively small number of queries and train a learned optimizer to outperform commercial optimizers.Moreover,learned optimizers need much less queries from AlphaQO than randomly generated queries,in order to well train the learned optimizer.
Keywords:learned optimizer  robustness  AI4DB  database  reinforcement learning  query generation
本文献已被 万方数据 等数据库收录!
点击此处可从《软件学报》浏览原始摘要信息
点击此处可从《软件学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号