首页 | 本学科首页   官方微博 | 高级检索  
     


Multi-scale damage analysis for a steel box girder of a long-span cable-stayed bridge
Abstract:Accurate evaluation of the effect of possible damage in critical components on the dynamic characteristics of a structure is of critical importance in developing a robust structural damage identification scheme for a long-span cable-stayed bridge. The strategies of finite element (FE) modelling of a long-span cable-stayed bridge for multi-scale numerical analysis are first investigated. A multi-scale model of the Runyang cable-stayed bridge is then developed, which is essentially a multi-scale combination of a FE model for modal analysis of the entire bridge structure and FE sub-models for local stress analysis of the selected locations with respect to the substructuring method. The developed three-dimensional global-scale and local-scale FE models of Runyang cable-stayed bridge achieve a good correlation with the measured dynamic properties identified from field ambient vibration tests and stress distributions of a steel box girder measured from vehicle loading tests, on the basis of which the effectiveness of some damage location identification methods, including a modal curvature index, a modal strain energy index and a modal flexibility index, are evaluated. The analysis results show that the effect of the simulated damage in various components of the steel box girder on the dynamic characteristics of a long-span cable-stayed bridge should be properly considered in structural damage analyses using multi-scale numerical computation.
Keywords:multi-scale analysis  steel box girder  long-span cable-stayed bridge  damage location identification  finite element approach
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号