首页 | 本学科首页   官方微博 | 高级检索  
     


A multiscale dynamic programming procedure for boundary detection in ultrasonic artery images
Authors:Liang Q  Wendelhag I  Wikstrand J  Gustavsson T
Affiliation:Department of Signals and Systems, Chalmers University of Technology, Sweden. liang@s2.chalmers.se
Abstract:Ultrasonic measurements of human carotid and femoral artery walls are conventionally obtained by manually tracing interfaces between tissue layers. The drawbacks of this method are the interobserver variability and inefficiency. In this paper, we present a new automated method which reduces these problems. By applying a multiscale dynamic programming (DP) algorithm, approximate vessel wall positions are first estimated in a coarse-scale image, which then guide the detection of the boundaries in a fine-scale image. In both cases, DP is used for finding a global optimum for a cost function. The cost function is a weighted sum of terms, in fuzzy expression forms, representing image features and geometrical characteristics of the vessel interfaces. The weights are adjusted by a training procedure using human expert tracings. Operator interventions, if needed, also take effect under the framework of global optimality. This reduces the amount of human intervention and, hence, variability due to subjectiveness. By incorporating human knowledge and experience, the algorithm becomes more robust. A thorough evaluation of the method in the clinical environment shows that interobserver variability is evidently decreased and so is the overall analysis time. We conclude that the automated procedure can replace the manual procedure and leads to an improved performance.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号