首页 | 本学科首页   官方微博 | 高级检索  
     


Hydration and reaction mechanisms on sodium silicate glass surfaces from molecular dynamics simulations with reactive force fields
Authors:Thiruvilla S Mahadevan  Jincheng Du
Affiliation:Department of Materials Science and Engineering, University of North Texas, Denton, TX, USA
Abstract:Recent development of reactive force fields have enabled molecular dynamics simulations of interactions between silicate glasses and water at the atomistic scale. While multicomponent silicate glasses encompass a wide variety of compositions and properties, one common structural feature in these glasses is the combination of the network structure that is made up of silica tetrahedra linked through corner sharing interspersed with network modifiers like alkali and alkaline-earth ions that break up the Si–O–Si linkages by forming nonbridging oxygen. In reactions with water, ion exchange between alkali ions in the glass and proton or hydronium in the solution, as well as hydrolysis reaction of the Si–O–Si linkages and subsequent silanol formation, is observed and well documented. We have used a set of recently developed reactive force field to investigate the reactions between water and the surfaces of silica and sodium silicate glasses of different compositions for reactions up to 8 nanoseconds. Our results indicate sodium leaching into water and diffusion of water molecules up to 25 Å into the glass surface. We examined the structural and compositional changes inside the glass and around the diffused ions and use these to explain the rates of silanol formation at the surface. We also observed proton transport in the glass which has an indirect influence on the silanol formation rates. While the surface of the glass was rough to start with, it undergoes further modification into a hydrated gel-like structure in the glass for up to 5 Å in the higher alkali containing glasses. It was found that the leached sodium ions remain close to the interface and that fragments of silicate network from the surface is capable of dislodging from the bulk glass and enter the aqueous solution. These simulations thus provide insights into the formation and structure of an alteration layers commonly observed in multicomponent silicate glasses corroded in aqueous solutions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号