首页 | 本学科首页   官方微博 | 高级检索  
     


The evolution of the mold flux melt structure during the process of fluorine replacement by B2O3
Authors:Lei Zhang  Wanlin Wang  Bingyu Zhai  Il Sohn
Affiliation:1. School of Metallurgy and Environment, Central South University, Changsha, China;2. School of Metallurgy and Environment, Central South University, Changsha, China

National Center for International Cooperation of Clean Metallurgy, Changsha, China;3. Department of Materials Science and Engineering, Yonsei University, Seoul, South Korea

Abstract:This study presented the melt structure evolution of mold flux during the substitution of fluorine by B2O3, and a computational model for the degree of polymerization (DOP) for borosilicate structure was developed. The results showed that the reduction of fluorine content would promote the replacement of F in SiF6]-octahedral unit by the dissociative free oxygen ions (O2?), and release F? ions into the melt to compensate the reduction of F? ions. With the 2 mass% addition of B2O3, the original Si–O–Si bond would be disrupted, and connect with BO3]-trihedral to form boroxol ring structure containing BO2O?]-trihedral and BO3]-trihedral structural units. Then, the Si–O–B bond that BO3]-trihedral links SiO4]-tetrahedral in boroxol ring was destroyed with the further addition of B2O3, and then the BO3]-trihedral could link with the dissociative Q1(Si) and Q0(Si) structural units to transform into BO4]-tetrahedral and form a borosilicate long chain. Finally, with 6 mass% addition of B2O3, the borosilicate chain would combine with simple borate and borosilicate structures, and a complex borosilicate structure containing boroxol ring with certain symmetry was formed ultimately. Besides, the calculated result of DOP suggested that the DOP of the melt structure improved during the process of fluorine replacement by B2O3.
Keywords:borosilicate  DOP  melt structure  mold flux
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号