首页 | 本学科首页   官方微博 | 高级检索  
     


Achieving single domain in rhombohedral and tetragonal Mn-doped Pb(In1/2Nb1/2)-Pb(Mg1/3Nb2/3)-PbTiO3 crystals for infrared detecting applications
Authors:Rongfeng Zhu  Jing Zhao  Fei Liu  Zhang Zhang  Bijun Fang  Jianwei Chen  Haiqing Xu  Xi’an Wang  Haosu Luo
Affiliation:1. Key Laboratory of Inorganic Functional Material and Device, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China;2. Key Laboratory of Inorganic Functional Material and Device, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China

University of Chinese Academy of Sciences, Beijing, China;3. Key Laboratory of Inorganic Functional Material and Device, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China

Key Laboratory of Optoelectronic Material and Device, Department of Physics, Shanghai Normal University, Shanghai, China

Abstract:The [111]-oriented rhombohedral Mn-doped 0.15Pb(In1/2Nb1/2)-0.55Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 (Mn:PIMNT(15/55/30)) crystal and the [001]-oriented tetragonal Mn-doped 0.29Pb(In1/2Nb1/2)-0.29Pb(Mg1/3Nb2/3)O3-0.42PbTiO3 (Mn:PIMNT(29/29/42)) crystal were poled under different conditions. The pyroelectric performance of the two crystals as a function of poling temperature, as well as the relationship with ferroelectric domain configuration and phase structure was investigated systematically. The pyroelectric properties of the two crystals enhance with rising the poling temperature, which can be attributed to the improvement of the single state. And for the rhombohedral Mn:PIMNT(15/55/30) crystal locating near morphotropic phase boundary (MPB), the increase of tetragonal phase induces the deterioration of pyroelectric properties. Due to more residual tetragonal phase, the pyroelectric coefficient of the Mn:PIMNT(15/55/30) crystal poled at 150°C is lower than that poled at 100°C. In general, both the crystals poled above TC achieve nearly single state, exhibiting the best pyroelectric properties with relatively high Curie temperature (TC), where P = 9.71 × 10−4 C m−2 K−1, Fi = 3.88 × 10−10 m V−1, Fv = 0.068 m2 C−1 and Fd = 29.7 × 10−5 Pa−1/2 for the rhombohedral Mn:PIMNT(15/55/30) crystal (TC = 171°C) and P = 6.78 × 10−4 C m−2 K−1, Fi = 2.71 ×10−10 mV−1, Fv = 0.1 m2 C−1, Fd = 23.54 × 10−5 Pa−1/2 for the tetragonal Mn:PIMNT(29/29/42) single crystal (TC = 251°C), meeting the stable operation of infrared detector at relatively high environmental temperatures.
Keywords:Mn:PIMNT single crystals  pyroelectric infrared detecting  rhombohedral structure and tetragonal structure  poling conditions  single domain state
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号