首页 | 本学科首页   官方微博 | 高级检索  
     

考虑热惯性的热电联产系统两阶段优化调度方法
引用本文:骆钊,刘德文,刘兴琳,贾芸睿,梁俊宇,喻品钦. 考虑热惯性的热电联产系统两阶段优化调度方法[J]. 电力工程技术, 2022, 41(5): 58-66
作者姓名:骆钊  刘德文  刘兴琳  贾芸睿  梁俊宇  喻品钦
作者单位:昆明理工大学电力工程学院, 云南 昆明 650500;楚雄师范学院物理与电子科学学院, 云南 楚雄 675000;云南电网有限责任公司电力科学研究院, 云南 昆明 650217
基金项目:国家自然科学基金资助项目(51907084);云南省应用基础研究计划资助项目(202101AT070080)
摘    要:热电联产(CHP)系统具有环保、经济、运行方式灵活的突出优势,有较好的发展前景。文中基于电、热在传输和存储方式上的不同特性,提出一种考虑热惯性的CHP系统两阶段优化调度方法。第一阶段考虑供热网络结构和运行特性,建立基于模型预测控制(MPC)的CHP系统优化调度模型,优化日内可控设备出力及电网交互功率策略;第二阶段以CHP系统内各单元出力调整量最小为目标,综合考虑可再生能源及负荷的实时预测误差,动态调整第一阶段日内调度策略。算例表明,该两阶段优化调度模型可提高系统运行的经济性,弥补供需不平衡;结合系统热惯性,建筑物根据负荷需求和分时电价进行蓄热或放热可降低可再生能源及负荷不确定性对调度的影响,平抑功率波动,促进热电互补。

关 键 词:热电联产(CHP)  热惯性  模型预测控制(MPC)  两阶段优化  动态优化调度  卷积神经网络
收稿时间:2022-03-17
修稿时间:2022-05-29

A two-stage optimal scheduling method for combined heat and power systems considering thermal inertia
LUO Zhao,LIU Dewen,LIU Xinglin,JIA Yunrui,LIANG Junyu,YU Pinqin. A two-stage optimal scheduling method for combined heat and power systems considering thermal inertia[J]. Electric Power Engineering Technology, 2022, 41(5): 58-66
Authors:LUO Zhao  LIU Dewen  LIU Xinglin  JIA Yunrui  LIANG Junyu  YU Pinqin
Affiliation:School of Electric Power Engineering, Kunming University of Science and Technology, Kunming 650500, China;School of Physical and Electronic Science, Chuxiong Normal University, Chuxiong 675000, China;Yunnan Power Grid Co., Ltd. Research Institute, Kunming 650217, China
Abstract:Combined heat and power (CHP) system has the outstanding advantages of environmental protection,economy and flexible operation mode,and has a better development prospect. Based on the different characteristics of electricity and heat in transmission and storage,a two-stage optimal scheduling method for CHP system considering thermal inertia is proposed. In the first stage,considering the structure and operation characteristics of the heating network,the optimal scheduling model of the CHP system based on model predictive control is established,and the strategy of intra-day controllable equipment output and grid interactive power is optimized. In the second stage,the goal is minimize the output adjustment of each unit in CHP system,and the real-time prediction error of renewable energy and load is taken into account to dynamically adjust the economic scheduling strategy in the first stage. The example shows that the two-stage optimal scheduling model can improve the economy of system operation and make up for the imbalance of supply and demand. Combined with the thermal inertia of the system,the building can store or release heat according to load demand and time-of-use electricity price,which can reduce the impact of renewable energy and load uncertainty on scheduling,smooth power fluctuations,and promote heat and power complementation.
Keywords:combined heat and power (CHP)  thermal inertia  model predictive control (MPC)  two-stage optimization  dynamic optimal scheduling  convolutional neural network
点击此处可从《电力工程技术》浏览原始摘要信息
点击此处可从《电力工程技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号