首页 | 本学科首页   官方微博 | 高级检索  
     


A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins, with implications for plastid evolution
Authors:DG Durnford  JA Deane  S Tan  GI McFadden  E Gantt  BR Green
Affiliation:Department of Medical Physiology, The Panum Institute, University of Copenhagen, Denmark. lodc@mfi.ku.dk
Abstract:Stimulation of cutaneous foot afferents has been shown to evoke a facilitation of the tibialis anterior (TA) EMG-activity at a latency of 70-95 ms in the early and middle swing phase of human walking. The present study investigated the underlying mechanism for this facilitation. In those subjects in whom it was possible to elicit a reflex during tonic dorsiflexion while seated (6 out of 17 tested), the facilitation in the TA EMG evoked by stimulation of the sural nerve (3 shocks, 3-ms interval, 2.0-2.5x perception threshold) was found to have the same latency in the swing phase of walking. The facilitation observed during tonic dorsiflexion has been suggested to be -- at least partly -- mediated by a transcortical pathway. To investigate whether a similar mechanism contributes to the facilitation observed during walking, magnetic stimulation of the motor cortex (1.2x motor threshold) was applied in the early swing phase at different intervals in relation to the cutaneous stimulation in 17 subjects. In 13 of the subjects, the motor potentials evoked by the magnetic stimulation (MEPs) were more facilitated by prior sural-nerve stimulation (conditioning-test intervals of 50-80 ms) than the algebraic sum of the control MEP and the cutaneous facilitation in the EMG when evoked separately. In four of these subjects, a tibialis anterior H-reflex could also be evoked during walking. In none of the subjects was an increase of the H-reflex similar to that for the MEP observed. In five experiments on four subjects, MEPs evoked by magnetic and electrical cortical stimulation were compared. In four of these experiments, only the magnetically induced MEPs were facilitated by prior stimulation of the sural nerve. We suggest that a transcortical pathway may also contribute to late cutaneous reflexes during walking.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号