首页 | 本学科首页   官方微博 | 高级检索  
     


Conditions stimulating neutral detergent fiber degradation by dosing branched-chain volatile fatty acids. I: Comparison with branched-chain amino acids and forage source in ruminal batch cultures
Authors:Y Roman-Garcia  BL Denton  KE Mitchell  C Lee  MT Socha  JL Firkins
Affiliation:1. Cargill Animal Nutrition, Innovation Campus, Elk River, MN 55330;2. Department of Animal Sciences, The Ohio State University, Columbus 43210;3. Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691;4. Zinpro Corporation, Eden Prairie, MN 55344
Abstract:Three experiments assessed branched-chain volatile fatty acid (BCVFA) stimulation of neutral detergent fiber (NDF) disappearance after 24 h of incubation in batch cultures derived from ruminal fluid inocula that were enriched with particulate-phase bacteria. In experiment 1, a control was compared with 3 treatments with isomolar doses of all 3 BCVFA (plus valerate), all 3 branched-chain AA (BCAA), or half of each BCVFA and BCAA mix with either alfalfa or grass hays (50%) and ground corn grain (50%). A portion of the BCAA and BCVFA doses were enriched with 13C, and valerate (also enriched with 13C) was added with BCVFA. Although BCAA yielded a similar production of BCVFA compared with dosing BCVFA, equimolar substitution of BCVFA for BCAA decreased the percentage of N in bacterial pellets when alfalfa hay was fed but increased N when grass hay was fed. Substituting BCVFA for BCAA increased total fatty acid (FA) concentration with alfalfa hay. Dosing of BCAA or BCVFA did not affect total branched-chain FA, iso-FA, or anteiso-FA percentages in bacterial total FA, whereas numerous individual FA isomers and their 13C enrichments were affected by these treatments. Increasing recovery of the 13C dose from respective labeled BCVFA primers indicated facilitated BCVFA uptake and incorporation into FA compared with BCAA, whereas increased recovery of 13C from labeled BCAA in the bacteria pellet but not in the FA fraction suggested direct assimilation into bacterial protein. The BCVFA and valerate were dosed in varying combinations that either summed to 4 mM (experiment 2) or had only 1 mM no matter what combination (experiment 3). In general, grass hay was more responsive to stimulation in NDF digestibility by BCVFA than was alfalfa hay, which was attributed to the higher degradable protein in the latter. The net production of the BCVFA (after subtracting dose) was affected by source and combination of BCVFA. Isovalerate dosing tended to increase its own net production; in contrast, isobutyrate seemed to be used more when it was added alone, but 2-methylbutyrate seemed to be preferred over isobutyrate when 2-methylbutyrate was added. Results supported potential interactions, including potential feedback in production from feed BCAA or increased concentration-dependent competition for dosed BCVFA into cellular products. Under our conditions, the BCVFA appear to be more readily available than BCAA, probably because of regulated BCAA transport and metabolism. Valerate consistently provided no benefit. Using nonparametric ranking, all 3 BCVFA or either isovalerate or isobutyrate (both yielding iso-FA) should be combined with 2-methylbutyrate (yielding anteiso-FA) as a potential opportunity to improve NDF digestibility when rumen-degraded BCAA are limited in diets to decrease environmental impact from N in waste.
Keywords:branched-chain volatile fatty acid  rumen bacteria  fiber degradation  batch culture
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号