首页 | 本学科首页   官方微博 | 高级检索  
     


On the detection of Faraday rotation in linearly polarized L-band SAR backscatter signatures
Authors:Freeman  A Saatchi  SS
Affiliation:Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA, USA;
Abstract:The potentially measurable effects of Faraday rotation on linearly polarized backscatter measurements from space are addressed. Single-polarized, dual-polarized, and quad-polarized backscatter measurements subject to Faraday rotation are first modeled. Then, the impacts are assessed using L-band polarimetric synthetic aperture radar (SAR) data. Due to Faraday rotation, the received signal will include other polarization characteristics of the surface, which may be detectable under certain conditions. Model results are used to suggest data characteristics that will reveal the presence of Faraday rotation in a given single-polarized, dual-polarized, or quad-polarized L-band SAR dataset, provided the user can identify scatterers within the scene whose general behavior is known or can compare the data to another, similar dataset with zero Faraday rotation. The data characteristics found to be most sensitive to a small amount of Faraday rotation (i.e., a one-way rotation <20/spl deg/) are the cross-pol backscatter /spl sigma//spl deg/(HV)] and the like-to-cross-pol correlation e.g., /spl rho/(HHHV/sup */)]. For a diverse, but representative, set of natural terrain, the level of distortion across a range of backscatter measures is shown to be acceptable (i.e., minimal) for one-way Faraday rotations of less than 5/spl deg/, and 3/spl deg/ if the radiometric uncertainty in the HV backscatter is specified to be less than 0.5 dB.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号