首页 | 本学科首页   官方微博 | 高级检索  
     

对搜索引擎中评分方法的研究
引用本文:韩立新. 对搜索引擎中评分方法的研究[J]. 电子学报, 2005, 33(11): 2094-2096
作者姓名:韩立新
作者单位:河海大学计算机科学与技术系,江苏南京,210024;南京大学计算机软件新技术国家重点实验室,江苏南京,210093;南京大学数学系,江苏南京,210093
基金项目:中国科学院资助项目,中国博士后科学基金
摘    要:针对搜索引擎评分较为困难的问题,文中提出了一种评分方法.该方法使用协同过滤技术,在同一兴趣组中各用户所提供的搜索结果集的基础上,采用文中提出的并行关联规则算法对各用户的局部有向图进行预处理,找出兴趣组中各成员都感兴趣的页面.然后对这些页面的内容和超链接附近出现的文本以及链接结构进行分析.计算权威页面和引导页面,以找到虽不包括在检索结果中,但相关的页面.此外,在对所获得的页面进行评价时,除考虑Web页自身的链接结构和兴趣组中查询用户对页面的评价,还考虑兴趣组中其它成员对页面的评价和所有成员对页面的使用情况等因素,从而使推荐给用户的页面排序更加合理.

关 键 词:信息检索  搜索引擎  数据挖掘  协同过滤
文章编号:0372-2112(2005)11-2094-03
收稿时间:2003-03-11
修稿时间:2003-03-112005-07-19

A Study on the Ranking Method of Search Engines
HAN Li-xin. A Study on the Ranking Method of Search Engines[J]. Acta Electronica Sinica, 2005, 33(11): 2094-2096
Authors:HAN Li-xin
Affiliation:Department of Computer Science & Technology,Hohai University,Nanjing,Jiangsu 210024,China; State Key Laboratory of Novel Software Technology,Nanjing University,Nanjing,Jiangsu 210093,China; Department of Mathematics,Nanjing University,Nanjing,Jiangsu 210093,China
Abstract:Currently it is difficult for search engine to rank effectively.This paper proposes a ranking method of search engines.The method applies collaborative filtering based on the retrieved results from the users in the same community.A parallel algorithm for mining association rules is described to preprocess all users' local directed graphs to find the commonly interesting pages for the users in the same community.Web pages contents,hyperlink structures and the associated texts are then analyzed.Authority pages and hub pages are recognized to discover the related results not found by the search engines.In addition,the evaluation of the web pages is based on not only the hyperlink structures and the query user's evaluation,but also the evaluation of other users in the same community and the usage of the pages by all users.As a result,the ranking method of the search engine is reasonable and effective.
Keywords:information retrieval  search engine  data mining  collaborative filtering  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《电子学报》浏览原始摘要信息
点击此处可从《电子学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号