首页 | 本学科首页   官方微博 | 高级检索  
     


Safety analysis of multiple-failure of passive safety systems in SBWR-1200 SBLOCA
Authors:Y Xu  M Ishii  M A Feltus  
Affiliation:

a School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, IN 47907, USA

b Department of Energy, Office of Advanced Nuclear Research, 19901 Germantown Road, Germantown, MD 20874-1290, USA

Abstract:The design of the simplified boiling water reactor (SBWR-1200) is characterized by utilizing fully passive safety systems. The emergency core cooling is realized by the gravity driven core cooling system, and the decay heat removal is done by the passive containment cooling system and isolation condenser system. All of the systems have multiple units and could be partially failed. The objective of this paper is to analyze the system response under the multiple malfunctions of passive safety systems in the SBWR-1200.

The chosen accident scenario is a small break loss of coolant accident with one of three gravity driven core cooling system drain lines blocked and one of three passive containment cooling system condensers disabled. An integral test has been carried out in the PUMA facility for 16 h. The facility is designed for low pressure, long term cooling operation with the multiple safety related components; therefore, it has the flexibility to demonstrate the asymmetric or multiple-failure effects with the combination of disability of safety systems. The test initial conditions at 1 MPa (150 psi) are obtained from RELAP5/MOD3.2 code simulation for the SBWR-1200 with appropriate scaling considerations.

Comparisons have been first made between the multiple-failure test and a single-failure test preformed previously. It shows that the core has been covered with liquid coolant during all of accident transient even though there is an apparent coolant inventory reduction in the multiple-failure test. The decay heat removal has no significant difference because the remaining two passive containment cooling condensers increase their cooling capacities, and even the drywell pressure is slightly lower due to the cold water injection from the suppression pool. Comparisons have also been made between the scaled-up test data and the code simulation at the prototypic level. The prototypic simulation is done by RELAP5/MOD3.2. Agreements between the code simulation and the scaled-up test data confirm the code applicability and the facility scalability for this accident scenario.

Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号