首页 | 本学科首页   官方微博 | 高级检索  
     


Stress Evolution With Temperature in Titanium‐Rich NiTi Shape Memory Alloy Films
Authors:A Kumar  S K Sharma  S V Kamat  S Mohan
Affiliation:1. Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500058, India;2. Department of Instrumentation, Indian Institute of Science, Bangalore 560012, India
Abstract:Abstract: The effect of deposition temperature on residual stress evolution with temperature in Ti‐rich NiTi films deposited on silicon substrates was studied. Ti‐rich NiTi films were deposited on 3″ Si (100) substrates by DC magnetron sputtering at three deposition temperatures (300, 350 and 400 °C) with subsequent annealing in vacuum at their respective deposition temperatures for 4 h. The initial value of residual stress was found to be the highest for the film deposited and annealed at 400 °C and the lowest for the film deposited and annealed at 300 °C. All the three films were found to be amorphous in the as‐deposited and annealed conditions. The nature of the stress response with temperature on heating in the first cycle (room temperature to 450 °C) was similar for all three films although the spike in tensile stress, which occurs at ~330 °C, was significantly higher in the film deposited and annealed at 300 °C. All the films were also found to undergo partial crystallisation on heating up to 450 °C and this resulted in decrease in the stress values around 55–60 °C in the cooling cycle. The stress response with temperature in the second thermal cycle (room temperature to 450 °C and back), which is reflective of the intrinsic film behaviour, was found to be similar in all cases and the elastic modulus determined from the stress response was also more or less identical. The three deposition temperatures were also not found to have a significant effect on the transformation characteristics of these films such as transformation start and finish temperatures, recovery stress and hysteresis.
Keywords:annealing  laser scanning  NiTi thin films  residual stress  thermal cycling
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号