首页 | 本学科首页   官方微博 | 高级检索  
     


Sweeping with electrokinetic injection and analyte focusing by micelle collapse in two-dimensional separation via integration of micellar electrokinetic chromatography with capillary zone electrophoresis
Authors:Zhang Zhaoxiang  Du Xiuzhen  Li Xuemei
Affiliation:State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, PR China.
Abstract:A novel integrated concentration/separation approach involving online combination of sweeping with electrokinetic injection and analyte focusing by micelle collapse (AFMC) with heart-cutting two-dimensional (2D) capillary electrophoresis (CE) in a single capillary was developed for analysis of Herba Leonuri and mouse blood samples. First, a new sweeping with an electrokinetic injection preconcentration method was developed to inject a large volume sample solution and significantly enhance detection sensitivity. Then, the preconcentration scheme was integrated to the 2D-CE to provide significant analyte concentration and extremely high resolving power. The sample was preconcentrated by sweeping with electrokinetic injection and separated in first dimension micellar electrokinetic chromatography (MEKC). Then, only a desirable fraction of the first dimension separation was transferred into the second dimension of the capillary by pressure and further analyzed by capillary zone electrophoresis (CZE) acting as the second dimension. As the key to successful integration of MEKC and CZE, an AFMC step was integrated between the two dimensions to release analytes from the micelle interior to a liquid zone and to overcome the sample zone diffusion caused by mobilization pressure. The injected sample plug lengths for flavonoids under 15 kV for 60 min were experimentally estimated as 546 cm. The dual concentration methods resulted in the increased detection factors of 6000-fold relative to the traditional pressure injection method. The relative standard deviation (RSD) values of peak height, peak area, and migration time were 2.7-4.5%, 1.9-4.3%, and 4.7-6.8% (n = 10), respectively. The limits of detection (S/N = 3) were in the range of 7.3-36.4 ng/L, and the theoretical plate numbers (N) were in the range of 1.7-4.3 × 10(4) plates/m. This method has been successfully applied to determine flavonoids in Herba Leonuri and postdosing mouse blood samples. The pharmacokinetic study also demonstrated that the proposed concentration/separation method was convenient and sensitive and would become an attractively alternative method for online sample concentration and separation in complex samples.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号