首页 | 本学科首页   官方微博 | 高级检索  
     

基于MI-LSSVM的水泥生料细度软测量建模
引用本文:赵彦涛,单泽宇,常跃进,陈宇,郝晓辰. 基于MI-LSSVM的水泥生料细度软测量建模[J]. 仪器仪表学报, 2017, 38(2): 487-496
作者姓名:赵彦涛  单泽宇  常跃进  陈宇  郝晓辰
作者单位:燕山大学电气工程院秦皇岛066004,燕山大学电气工程院秦皇岛066004,燕山大学电气工程院秦皇岛066004,燕山大学电气工程院秦皇岛066004,燕山大学电气工程院秦皇岛066004
基金项目:国家自然科学基金(61403336)项目资助
摘    要:针对水泥生料细度软测量模型难以建立的问题,考虑到输入变量选择易受时延的影响,提出一种基于互信息和最小二乘支持向量机(MI-LSSVM)的软测量建模方法。该方法采用互信息表征变量间的相关性,进而解决水泥生料细度软测量建模中的时延问题,并在此基础之上,提出双向选择算法获取输入变量,将得到的输入变量应用于最小二乘支持向量机中,建立水泥生料细度软测量模型,最后应用水泥厂的实际数据对基于互信息和最小二乘支持向量机的水泥生料细度软测量模型进行仿真。结果表明该方法预测精度高、泛化能力强。

关 键 词:互信息;最小二乘支持向量机;变量选择;水泥生料细度;软测量建模

Soft sensor modeling for cement fineness based on least squares support vector machine and mutual information
Zhao Yantao,Shan Zeyu,Chang Yuejin,Chen Yu and Hao Xiaochen. Soft sensor modeling for cement fineness based on least squares support vector machine and mutual information[J]. Chinese Journal of Scientific Instrument, 2017, 38(2): 487-496
Authors:Zhao Yantao  Shan Zeyu  Chang Yuejin  Chen Yu  Hao Xiaochen
Affiliation:Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China,Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China,Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China,Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China and Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
Abstract:To accurately establish the soft sensor model of cement fineness, the selection of input variables is easily influenced by time delay. Thus, this paper proposes a soft sensor modeling method based on mutual information and least square support vector machine (MI LSSVM). In the proposed method, the correlation of variables is represented by mutual information, which can be used to determine the time delay of each auxiliary variable. Furthermore, the two way selection algorithm is proposed to obtain input variables, and a soft sensor model of cement fineness is built based on least squares support vector machine with these selected input variables. Finally, the proposed model is trained with actual operational data of a cement plant. The experimental results show that the model can achieve high precision and generalization.
Keywords:mutual information   least square support vector machine (LSSVM)   variable selection   cement fineness   soft sensor modeling
本文献已被 CNKI 等数据库收录!
点击此处可从《仪器仪表学报》浏览原始摘要信息
点击此处可从《仪器仪表学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号