首页 | 本学科首页   官方微博 | 高级检索  
     

时间域广义2.5D一阶波动方程曲网格有限差分法数值模拟
引用本文:杨尚倍,白超英,ZHOU Bing.时间域广义2.5D一阶波动方程曲网格有限差分法数值模拟[J].石油地球物理勘探,2021,56(6):1262-1278.
作者姓名:杨尚倍  白超英  ZHOU Bing
作者单位:1. 中国地质调查局西安地质调查中心, 陕西西安 710054;2. 长安大学地质工程与测绘学院地球物理系, 陕西西安 710054;3. 哈利法科学与技术大学地球科学系, 阿布扎比 2533
基金项目:本项研究受国家重点研发计划“典型覆盖区航空地球物理技术示范与处理解释软件平台开发”所属课题“北秦岭华阳川地区隐伏铀矿空—地—井协同勘查技术示范研究”(2017YFC0602205)和Reward of Khalifa University of Science and Technology (CIRA-2018-48)联合资助。
摘    要:2.5D地震波场数值模拟通过在2D地质模型中施加点源从而计算得到3D地震波场。首先通过傅里叶变换得到了一种适用于混合(声波、弹性各向同性、弹性各向异性)介质和各种边界条件(声波自由地表、固体自由地表和固—液边界)的2.5D时域广义一阶波动方程,并采用曲线网格有限差分法求解该波动方程。在各种均匀介质模型(声波、弹性各向同性和弹性各向异性)中,通过对比2.5D数值解与3D解析解和3D数值解,不仅验证了推导的方程和数值求解方法的正确性,而且验证了2.5D数值方法相比3D数值方法在计算效率和内存占用方面有很大的优势。2D数值方法由于线源假设,其解与2.5D数值解相比存在较大的振幅误差和相移,难以直接应用。数值实验结果表明,该2.5D数值模拟方法适用于含各种边界(声波自由地表、固体自由地表和固—液边界)的地质模型。不同于2D波场数值模拟方法,2.5D波场数值模拟方法可直接应用于实际的点源观测数据处理,如2.5D逆时偏移成像。

关 键 词:波场模拟  广义一阶波动方程  2.5D  有限差分法  曲线网格  
收稿时间:2021-04-25

Curvilinear-grid finite-difference numerical simulation method for generalized first-order 2.5D time-domain wave equation
YANG ShangBei,BAI ChaoYing,ZHOU Bing.Curvilinear-grid finite-difference numerical simulation method for generalized first-order 2.5D time-domain wave equation[J].Oil Geophysical Prospecting,2021,56(6):1262-1278.
Authors:YANG ShangBei  BAI ChaoYing  ZHOU Bing
Affiliation:1. Xi'an Centre of Geological Survey, China Geological Survey, Xi'an, Shaanxi 710054, China;2. Institute of Geophysics, School of Geological Engineering and Geomatics, Chang'an University, Xi'an, Shaanxi 710054, China;3. Department of Earth Sciences, Khalifa University of Science and Technology, Abu Dhabi 2533, UAE
Abstract:The 2.5D seismic wavefield numerical stimulation employs the point source in 2D geological models to calculate 3D seismic wavefields. In this paper, we present a generalized 2.5D first-order time-domain wave equation that can be applied to different media (acoustic isotropic, elastic isotropic, and elastic anisotropic) and various boundary conditions (acoustic free-surface, solid free-surface, and solid-liquid boundary). The wave equation is solved by a curvilinear-grid finite-difference method. A comparison of 2.5D numerical solutions, 3D analytic solutions, and 3D numerical solutions in different homogeneous medium models (acoustic isotropic, elastic isotropic, and elastic anisotropic) verifies the correctness of the derived equation and the numerical solution method. It also demonstrates that compared with the 3D nume-rical method, the 2.5D numerical method has great advantages in calculation efficiency and memory footprint. The 2D numerical solutions cannot be applied directly in that they suffer significant amplitude distortion and phase shifts due to an artificial line source applied in this method. The results of numerical experiments show that the proposed 2.5D numerical simulation method can be applied to geological models with different boundary conditions (acoustic free-surface, solid free-surface, and solid-liquid boundary). In addition, unlike the 2D wavefield numerical simulation method, the 2.5D method can be directly employed to process actual point source observation data such as 2.5D reverse-time migration.
Keywords:wavefield simulation  generalized first-order wave equation  2  5D  finite-difference method  curvilinear-grid  
点击此处可从《石油地球物理勘探》浏览原始摘要信息
点击此处可从《石油地球物理勘探》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号